
PC1 PVK FS20

Janik Schüttler
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1 Thermodynamic basics

Systems: isolated, closed, open

We distinguish isolated, closed and open system. Note that closed systems allow

energy flows (work or heat).

System type can be transferred cannot be transferred

Isolated - energy, mass

Closed energy (work and/or heat) mass

Open energy, mass -

Equilibrium

A system is at equilibrium if its state does not change change anymore over time.

Exercise 1. (2018-2, 1a) Describe equilibrium in words.

Exercise 2. How do two systems equilibrate that are connected via a moveable

wall that is impermeable to heat?

Transformations

Types We distinguish isothermal, isochoric, isobaric and adiabatic processes.

Condition mathematically

Isothermal dT = 0

Isochoric dV = 0

Isobaric dp = 0

Adiabatic q = 0

Reversibility & irreversibility reversible processes are performed slowly and can

be reversed in any step. Irreversible processes are the opposite of reversible pro-

cesses.

Sign convention for energies

I used to find sign conventions so confusing that it hindered me to properly under-

stand things like the Carnot cycle, where energies seems to be arbitrarily negative/

positive, sometimes they had a minus, sometimes they didn’t. Let me try to make

this clear for you.

The takeaway is:

Energy is positive if the system receives energy. Energy is negative if the

system loses energy.
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My experience is that this is easier said than understood. It is important to properly

identify the system of interest since the signs of all energies depend on which system

is of interest.

How to read or draw a diagram according to Barnes rules?

a) Draw all parts of the setting: system, machines, heat reservoirs.

b) Connect all parts of the settings where energy heat is transferred without an

arrow. If any of the parts receives or loses energy in the form of work draw a

line without arrow away from the respective part.

c) Think about which direction the energy flows. Does the heat flow into the

system or out of it? Does the system do work (energy flows away from the

system) or is work done on the system (energy flows into the system)? Draw

an arrow in the direction of the energy flow.

d) Annotate the lines with the name of the heat or work. Use a minus if the heat

or work is negative, i.e. if the energy flows out of the system.

Exercise 3. Draw a diagram for a machine that extracts heat from a warm

reservoir and uses this heat to do work on the environment and put heat into a

colder reservoir.

2 Work

• Work is useful energy (in contrast to heat that is energy that is not useful).

Useful energy means that this energy can be used for things humans would

want to use energy for, e.g. to drive a car, to power a fabric etc.

• In principle, there can be many types of work, see table. Our main focus

will be volume/pressure and chemical work. Volume/pressure is the work that

powers cars, chemical work powers chemical reactions.

Work name force coordinate expression

Pressure/volume work −p dV −p dV

Chemical work µ dn µ dn

Magnetic work H dM H dM
...

...
...

...

• Barnes usually refers by work only to volume/pressure work. The expression

is given by

δw = −pext dV.

• pext is the pressure of the surrounding (draw sketch with system + surrounding

and pint, pext). idea: system has to press against this pressure or is pressed by

this pressure
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• important: pext = pint in reversible processes. useful because we often know

how to compute pint, e.g. ideal gas

δwrev = −pext dV = −pint dV

• in computation questions always finite quantities: infinitesimal → finite

w =

!
δw = −

!
pext dV

if pext is not a function of V, then w = −pext
"
dV = −pext∆V . if pext is a

function of V, then w = −
"
pext(V ) dV

draw two sketches: integral

• work are energies associated with processes, not with a system

• reversible processes extract the most work from the system

Exercise 1. Describe the concept of work in words and using a mathematical

equation.

Exercise 2. Consider an (ideal) gas initially at pressure p0 and volume V0. The

gas now expands against its surrounding that is at constant pressure p.

a) Draw a pV -plot and qualitatively indicate the process from the gas’ initial to

its final state.

b) Indicate in your plot the work done by the system.

c) How would you change the process so that the system can perform the most

work? Indicate also the maximal work possible in your plot.

Exercise 3. (2017-1, 1n) A chemical reaction takes place in a container of

cross-sectional area 60.0 cm2. As a result of the reaction, a piston is pushed out

through 15.0 cm against an external pressure of 121 kPa. Calculate the work done

by the system.

Exercise 4. (2014-1, 1e) Derive the expression for the maximum work that

can be extracted from an isothermal process (assume a monatomic ideal gas).

Exercise 5. (2015-1, 2e; 2016-1, 2d) Derive the equation for the maximum

work extracted from an isothermal expansion of a van der Waals gas from V1 to V2.

The van der Waals equation of state is#
p+

an2

V 2

$#
V

n
− b

$
= RT
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3 Equations of states

pV = nRT (ideal gas)
#
p+

an2

V 2

$#
V

n
− b

$
= RT (van der Waals gas)

The van der Waals gas is a generalization of the ideal gas by the following corrections:

• Volume correction: Ideal gases assume gas molecules to be point particles that

do not take up any volume. Real gases require a finite volume and thus the

effective volume is reduced by a constant factor b, i.e. V/n → V/n− b.

• Pressure correction: Ideal gas molecules are assumed to not interact. Molecules

in real gases experience attractive or repulsive interactions among each other

that lead to higher/lower pressure.

Exercise 1. Explain how to derive the van-der-Waal’s equation of state from the

ideal gas law.

4 Zeroth law of thermodynamics: temperature

If two systems A and B are at thermal equilibrium, i.e. have the same temper-

ature, and systems B and C are at thermal equilibrium, then by the 0th law of

thermodynamics, systems A and C are at thermal equilibrium.

Exercise 1. (2017-1, 1j; 2018-1, 1m; 2018-2, 1g) How can you experi-

mentally determine the ideal gas constant, R? Use a graphical plot of temperature

to explain. (Hint, you may find the definition of Boyle’s law on the equation sheet

useful). In your experiment, what are the units of R?

Exercise 2. (2014-1, 2f) Now, also show how you can derive the Ideal gas law

from Boyle’s law. Use a graphical plot of temperature to explain. (Hint, you may

find the definition of Boyle’s law on the equation sheet useful.

5 First law of thermodynamics: energy conversion

First law of thermodynamics

a) The internal energy of a system, U , can change due to transferred heat, q, or

by work, w, (volume work, chemical work, etc).

b) The internal energy is an exact differential%
dU = 0.
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For isolated, closed, open system, the first law can be stated as:

dU = 0 (Isolated)

dU = δq + δw (Closed)

dU = δq + δw +
&

i

µ dni (Open)

Why is that a useful law? The first law forbids energy production. It says that

energy can only be converted, not produced.

a) The first part says that if the internal energy does change, then energy must

have been transferred onto or away from the system. It further specifies that

the two kinds of energies that could lead to a change in internal energy are

heat and work.

b) The internal energy U must be a state function, because otherwise we could

design a perpetuum mobile. Imagine two thermodynamic states A,B are con-

nected by two paths, 1 and 2, that change the internal energy differently,

∆UA→B,1 > ∆UA→B,2. We could then first go from A to B using path 1 and

then back from B to A using path 2. In total we would have gained the energy

∆U = ∆UA→B,1 +∆UB→A,2

= ∆UA→B,1 −∆UA→B,2 > 0.

If we continued to run this cycle we could be able to create infinite amounts

of energy. This cannot be.

Exercise 1. (2018-1, 1a) State the first law of thermodynamics in words.

Solution The first law states that the change in internal energy of a system is equal

to the sum of the work done on/by the system and the heat exchanged.

The first law states that the total energy of the system and its surroundings (the

Universe), or an isolated system is constant.

Exercise 2. Formulate the first law of thermodynamics for isolated, closed and

open systems.

Exercise 3. You and your friend are discussing a thermodynamic system. Your

favorite transformation is from state A to state B with change in internal energy

∆UA→B, but unfortunately this transformation is irreversible. Your friend claims it

is advantageous to first change the state from A to C and only then to B such that

the entire process can be done reversibly and thus ∆UA→C→B > ∆UA→B. Discuss.

Solution It cannot be that ∆UA→C→B > ∆UA→B since U is a state function.

Exercise 4. Why must the internal energy be a state function? Assuming internal

energy not a state function, construct a perpetuum mobile.
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Solution See construction above.

Exercise 5. At ETH Hönggerberg we are 523 meters above sea level. Is the height

above sea level with respect to coordinates a state function? Argue.

Solution Yes, height is a state function. For the height above sea level at a position,

it does not matter which path you take to reach that position.

6 Heat & heat capacities

• definition of heat and heat capacities

Process Heat

Isochoric dV = 0 δq := CV dT q = CV ∆T

Isobaric dp = 0 δq := Cp dT q = Cp∆T

Adiabatic δq = 0 δq := 0 q = 0

Isothermal dT = 0 no definition

• connection between capacities for ideal gases

Cp − CV = nR

• same heat q different ∆T

∆T =
q

CV
(isochoric)

∆T =
q

Cp
=

q

CV +R
<

q

CV
(isobaric)

reason: dV = 0: no work done, dp = 0: work must be done

• monoatomic of freedom f

CV =
f

2
nR, Cp =

#
1 +

f

2

$
nR

• in terms of degrees of freedom f

CV =
f

2
nR, Cp =

#
1 +

f

2

$
nR

• degrees of freedom = translational + rotational + vibrational

f = 3 (monoatomic)

f =

'
((()

(((*

3 0K < T <∼ 100K

3 + 2 ∼ 100K < T <∼ 1500K

3 + 2 + 2 ∼ 1500K < T

(diatomic)

Exercise 1. Define heat for isochoric, isobaric and adiabatic processes.

Exercise 2. (2015-1, 1d; 2016-1, 1d) Using words, mathematical notation,

and a figure of a piston, explain why for gases Cp is always larger than CV .
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Exercise 3. (2017-1, 2d) Derive CV =
+
∂U
∂T

,
V

using the 1st law at constant

pressure and an equation that relates heat transferred at constant pressure, heat

capacity at constant pressure, and the temperature rise of a system.

Exercise 4. (2015-1, 3c; 2018-1, 5b) What is the value of CV in units of

R? Justify your answer with words, including “translational degrees of freedom”,

“rotational degrees of freedom” , and “vibrational degrees of freedom”. (Recall:

Take the gas to be N2(g) between 100 and 200 Kelvin to make any appropriate

approximations of the heat capacity.)

Exercise 5. (2017-1, 1k) What is CV of diatomic Oxygen at 200 Kelvin (in

units of R)?

Exercise 6. (2017-1, 1m) What is Cv of monatomic Helium at 200 Kelvin (in

units of R)?

7 Enthalpy

Enthalpy: like internal energy, but more suitable for pressure, not volume

δq = dU + p dV = dU + p dV + V dp = d(U + pV ) = dH

Exercise 1. (2015-2, 1d) Explain the difference between internal energy and

enthalpy. Use at least one full sentence and one equation. Is enthalpy a state

function?

Exercise 2. (2017-1, 2a; 2018-1, 2a) Derive Enthalpy using the 1st law at

constant pressure and an equation that relates heat transferred at constant pressure,

heat capacity at constant pressure, and the temperature rise of a system.

8 Thermodynamic processes

8.1 Typical assumptions

Ideal gas This is the single coolest assumption you can be given. It means that

the ideal gas law holds

pV = nRT.

This has a cool list of consequences:

• d(pV ) = d(nRT ) = nR dT . For example, in isothermal processes (dT =

0) any pV correction like in the enthalpy will drop out.

• For monoatomic gases, CV = 3
2nR and Cp =

5
2nR
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• Cp − CV = nR. This is useful to rewrite Cp and CV . For example,

enthalpy is defined as H = U+pV . In an isochoric (dV = 0) process, U =

q = CV dT (see table below) and thus dH = d(U+pV ) = CV dT+d(pV ).

Using d(pV ) = d(nRT ) from above, we get dH = (CV + nR) dT and

because CV + nR = Cp we get dH = Cp dT .

• For ideal gases, the inner energy, U , is only a function of temperature,

U = U(T ). This means that in isothermal processes (dT = 0) the inner

energy of an ideal gas never changes, i.e. dU = 0.

• For adiabatic processes, the adiabat equations holds

pV γ = const. TV γ−1 = const. p1−γT γ = const.

Reversible, pext = pint Reversible processes also have some cool consequences:

• pext = pint. This allows us to compute work

w =

!
δw =

! V2

V1

pext dV =

! V2

V1

pint dV

at constant temperature and number of particles if we know the pressure

of the interior. This is the case if we can additionally assume an ideal gas

(see above) or a van der Waals gas,

p =
nRT

V
, (ideal gas)

p =
R

V − b
− a

V
2 , (van der Waals gas)

with V = V/n.

• It holds that dS = δq
T . In general this does not hold. In isolated systems

even dS = 0.

Constant external pressure, pext = const This is useful in irreversible processes.

Using this assumption you can compute the work of the process

w =

!
δw = −

! V2

V1

pext dV
pext=const

= −pext

! V2

V1

dV = −pext(V1 − V2).

CV , Cp independent of T This assumption is often not stated explicitly, but most

of the time you require this assumption to calculate heat. Using the definition

of the heat capacities we can compute heat

q =

! T2

T1

CV (T ) dT (constant volume)

q =

! T2

T1

Cp(T ) dT (constant pressure)

If the heat capacities are independent of temperature, these integrals simplify

q =

! T2

T1

CV dT = CV ∆T (constant volume)

q =

! T2

T1

Cp dT = Cp∆T (constant pressure)

10



8.2 Adiabatic processes

In an adiabatic process, all three quantities V, T, p change. This makes it hard

to compute energies in adiabatic processes. However, combinations of V, T, p can

remain constant. For an ideal gas, the condition are

pV γ = const. TV γ−1 = const. p1−γT γ = const.

The heat capacity ratio is defines as γ =
Cp

CV
.

Adiabats are steeper than isotherms

Isotherm : p ∝ 1

V

Adiabat : p ∝ 1

V γ
, γ > 1
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8.3 Overview ideal processes

Isothermal dT = 0 ideal

Energy dU = δq + δw U = U(T ) ⇒ dU = 0 ∆U = 0

Work δw = −pext dV w =?

Heat δq = −δw q =?

Enthalpy dH = d(U + pV ) d(pV ) = d(nRT ) = 0 ∆H = 0

Entropy dS = δqrev
T = − δwrev

T dS = nR
V dV ∆S = nR ln

Vf

Vi

Isochoric dV = 0

Work δw = −pext dV = 0 w = 0

Heat δq = CV dT q = CV ∆T

Energy
dU = δq + δw

= δq = dq
∆U = CV ∆T

Enthalpy
dH = d(U + pV )

= CV dT + d(pV )

d(pV ) = d(nRT )

Cp = CV + nR
∆H = Cp∆T

Entropy dS = δqrev
T = CV

T dT ∆S = CV ln
Tf

Ti

Isobaric dp = 0

Work δw = −p dV w = −p∆V

Heat δq = Cp dT = dq q = Cp∆T

Enthalpy
dH = δq + δw + p dV

= δq = dq
∆H = Cp∆T

Energy
dU = d(H − pV )

= Cp dT + d(pV )

d(pV ) = d(nRT )

CV = Cp − nR
∆U = CV ∆T

Entropy dS = δqrev
T =

Cp

T dT ∆S = Cp ln
Tf

Ti

Adiabatic δq = 0

Heat δq = 0 q = 0

Entropy dS = δqrev
T = − δwrev

T dS = nR
V dV ∆S = nR ln

Vf

Vi

Work δw = −pext dV w =?

Energy dU = δw = dw ∆U
?
= CV ∆T

Enthalpy dH = V dp ∆H
?
= Cp∆T
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8.4 Overview reversible ideal processes

Isothermal dT = 0 ideal

Energy dU = δq + δw U = U(T ) ⇒ dU = 0 ∆U = 0

Work δw = −p dV δw = −nRT
V dV w = −nRT ln

Vf

Vi

Heat δq = −δw q = nRT ln
Vf

Vi

Enthalpy dH = d(U + pV ) d(pV ) = d(nRT ) = 0 ∆H = 0

Entropy dS = δqrev
T = − δw

T ∆S = nR ln
Vf

Vi

Isochoric dV = 0

Work δw = −p dV = 0 w = 0

Heat δq = CV dT q = CV ∆T

Energy
dU = δq + δw

= δq = dq
∆U = CV ∆T

Enthalpy
dH = d(U + pV )

= CV dT + d(pV )

d(pV ) = d(nRT )

Cp = CV + nR
∆H = Cp∆T

Entropy dS = δqrev
T = CV

T dT ∆S = CV ln
Tf

Ti

Isobaric dp = 0

Work δw = −p dV w = −p∆V

Heat δq = Cp dT = dq q = Cp∆T

Enthalpy
dH = δq + δw + p dV

= δq = dq
∆H = Cp∆T

Energy
dU = d(H − pV )

= Cp dT + d(pV )

d(pV ) = d(nRT )

CV = Cp − nR
∆U = CV ∆T

Entropy dS = δqrev
T =

Cp

T dT ∆S = Cp ln
Tf

Ti

Adiabatic δq = 0

pV γ = const

Heat δq = 0 q = 0

Entropy dS = 0 ∆S = 0

Work δw = −p dV
δw = −pi

-
Vi
V

.γ
dV

∆(pV ) = nR∆T
w = CV ∆T

Energy dU = δw = dw ∆U = CV ∆T

Enthalpy dH = V dp V dp = V0

-
p0
p

. 1
γ
dp ∆H = Cp∆T
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Exercise 1. (2017-1, 1e; 2018-1, 1j) How much heat is absorbed by an ideal

gas expanding reversibly, and isothermally, from p1,V1 to p2, V2?

Exercise 2. (2017-1, 1d; 2018-1, 1i)

a) What is the change in internal energy of an ideal gas after undergoing an

isothermal reversible expansion from p1,V1 to p2, V2? What is the change in

enthalpy of an ideal gas after undergoing an isothermal reversible expansion

from p1,V1 to p2, V2?

b) What is the change in internal energy and enthalpy of an ideal gas after un-

dergoing an isothermal irreversible expansion from p1,V1 to p2, V2?

Exercise 3. (2016-1, 4; 2014-1, 4; 2015-1, 3; 2018-1, 5) The figure

below shows reversible thermodynamic processes in pV space. Assume the gas is

diatomic nitrogen, with a constant molar heat capacity at points A, B & C. Make

any appropriate approximations of the heat capacity. However, assume this is a

“perfect” gas, in that there are no intermolecular interactions and the gas behaves

the ideal equation of state.

First, consider the left figure.

a) From the paths shown on the left figure, indicate the thermodynamic cycle

(with arrows) that would yield the most work output of the system. At which

point would you start your cycle to output the most work?

Now consider the system depicted in the right figure.

b) Calculate the amount of gas molecules (in moles) in the system of the right

figure.

c) Calculate q, w, ∆U and ∆H for each of the three paths, and the total work

around the closed path.

d) How many cycles per minute of this heat engine would be required to power a

200 Watt propeller?

e) Explain in words how you could physically implement each of the thermody-

namic pathways of your engine.
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f) Explain in words how you could make your engine more efficient (increase your

work output by decreasing your work input). Assume extra heating or cooling

does not cost you anything. Also draw your new thermodynamic cycle on the

PV diagram above. You can use new pathways for your new engine.

Exercise 4. (2017-1, 1c) Do ideal gases cool in adiabatic reversible expansions?

Why or why not?

Exercise 5. (2015-2, 1e) An ideal gas at 298 K expands irreversibly against

a vacuum and isothermally from an internal pressure of 10 bar to 1 bar. What are

the values of w per mole, q per mole, ∆U , ∆H, ∆S?

Exercise 6. (2018-2, 4)

a) Starting with dG = V dp−S dT , derive an expression for the change in Gibbs

free energy of an ideal gas from changing the pressure from p = p◦, to p = p$

(while keeping temperature constant).

b) Use your result to calculate the change in free energy when 0.75 moles of a

ideal gas is reduced in pressure to 0.50 bar from 1.0 bar, while maintaining a

temperature of 298 Kelvin.

9 Joule-Thompson and Joule free expansion

ηJ :=

#
∂T

∂V

$

U

id gas
= 0 (Joule coefficient)

ηJT :=

#
∂T

∂p

$

H

=
V

Cp
(Tα− 1)

id gas
= 0 (Joule-Thompson coefficient)

#
∂U

∂V

$

T

= −CV

#
∂T

∂V

$

U

= −CvηJ ,

#
∂H

∂p

$

T

= −Cp

#
∂T

∂p

$

H

= −CpηJT

dU = CV dT − CV ηJ dV

dH = Cp dT − CpηJT dp

Exercise 1. (2017-1, 1i) Explain the Joule-Thompson experiment using at least

one figure. Calculate the change in enthalpy in the experiment by also calculating

the total work done.

Exercise 2. (2017-1, 1b) Do gases always cool when they expand? Give

examples to justify your answer.

Exercise 3. (2016-1, 1h)
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For the Joule-Thompson expansion shown above, calculate the temperature after

expansion through a throttling nozzle (i.e. porous plug) for the following three

initial temperatures of helium gas: 99 Kelvin, 47 Kelvin, and 9.0 Kelvin. The initial

pressure was 17.9 bar, the final pressure 4.8 bar. Estimate whatever values you need

to the best of your ability.

Exercise 4. The graph on the following page shows the Joule-Thompson coeffi-

cients of N2(g) and He(g) as a function of temperature.

a) If N2(g) enters the bearing at 79.4 Kelvin and 3.0 bar, what is the temperature

of the N2(g) after it has expanded to 1.0 bar? Why might this lead to unstable
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spinning and crashing of the rotor? Use a first order approximation to estimate

the Joule-Thompson coefficient of N2(g) at 79.4 Kelvin (hint: notecards have

straight edges that can be used to extrapolate curves). Show your work on the

graph and the space provided below.

b) Use a
RT − b = µJT and the mathematical definition of the Joule Thompson

coefficient to explain why Helium gas cools upon expansion < 43 Kelvin, but

heats upon expansion > 43 Kelvin. Use words and equations in your answer

and discuss intermolecular interactions.

Exercise 5. (2018-1, 4a)

a) Calculate the change in enthalpy for one mole of a real gas expanding in a

Joule-Thompson experiment by also calculating the work done on the first

and the second piston. Take p1 = 51bar, V1 = 51L and p2 = 12.8 bar,

V2 = 204L. Although this is real gas, assume pV = ZnRT is valid, with

Z = 1.002. Calculate the Joule-Thompson coefficient of the gas.

b) Explain why we can calculate the enthalpy change, even though the Joule-

Thompson experiment is an irreversible process. In your explanation use a

diagram (figure) of the experiment.

10 Thermodynamic potentials

10.1 Fundamental equations

S = S(U, V, n) =
1

T
(U + pV −

&

i

µini), dS =
1

T
dU +

p

T
dV − 1

T

&

i

µi dni

U = U(S, V, n) = TS − pV +
&

i

µini, dU = T dS − p dV +
&

i

µi dni

H = H(S, p, n) = U + pV = TS +
&

i

µini, dH = T dS + V dp+
&

i

µi dni

A = A(T, V, n) = U − TS = −pV +
&

i

µini, dA = −S dT − p dV +
&

i

µi dni

G = G(T, p, n) = A+ pV =
&

i

µini, dG = −S dT + V dp+
&

i

µi dni

Statement condition in words

dU = δq = T dS dV = 0, dni = 0 internal energy = heat

dH = δq = T dS dp = 0, dni = 0 Enthalpy = heat

dU = δw = −p dV dS = 0, dni = 0 internal energy = work = useful energy

dA = δw = −p dV dT = 0, dni = 0 Free energy = work (”free” energy)

dG =
/

i µi dniV dT = 0, dp = 0 Gibbs free energy = chemical work

dA =
/

i µi dniV dT = 0, dV = 0 Free energy = chemical work
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Exercise 1. (2015-2, 2d) Assume a closed system (dn = 0 for all components).

Given the mathematical expressions for the 1st and 2nd law, derive the fundamental

equation for dU . What is the fundamental equation for dU in open systems?

Exercise 2. (2015-2, 2e) Using the fundamental equation for dU and A =

U − TS derive the fundamental equation for dA without chemical potentials.

Exercise 3. (2018-2, 1f) What are the slopes indicated below in terms of

a single macroscopic thermodynamic variable (no derivatives) in the plot of Gibbs

Free Energy below? Macroscopic thermodynamic variables are T, V, p, Cp, CV , U ,

S, H, A, G.

Exercise 4. (2015-2, 4)

a) In the recent study, “B2-Adrenergic Receptor Activation by Agonists Studied

with 19F NMR Spectroscopy”, the authors find two molecular conformations

with the same value of Gibbs Free Energy. If a sample of 10 · 1017 of these

proteins is initially ALL in one of the two conformations was allowed to equi-

librate at constant pressure and temperature, what would be the number of

molecules in each state at equilibrium.

b) Would this process be reversible or irreversible? Justify your answer using a

mathematical statement of the 2nd law and full sentences.

10.2 Maxwell relations

General idea for dU = T dS − p dV : choose either T or p (intensive quantitiy), take

derivative with respect to another extensive variable (not its conjugated one), do

the same with the other intensive variable
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The four most important Maxwell relations and shortcut using Guggenheim schema:

Exercise 5. Derive the Maxwell relation(s) from the fundamental relation of inner

energy, dU , for

a) closed systems,

b) open systems.

Exercise 6. Derive a Maxwell relation for the following hypothetical thermody-

namic state function Ψ

dΨ = φ dH + µ dG.

Solution #
∂φ

∂G

$

H

=
∂2Ψ

∂G∂H
=

∂2Ψ

∂H∂G
=

#
∂µ

∂H

$

G

Exercise 7. (2015-2, 2b,c)

a) Using a Maxwell Relation and starting with dU = T dS− p dV , prove that for

an ideal gas #
∂U

∂V

$

T

= 0.

b) Starting with the mixed partial derivatives of Free Energy, and a fundamental

equation describing an infinitesimal change in Free Energy, derive the Maxwell

Relation you used in 2b.
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11 Second law of thermodynamics: entropy maximiza-

tion

• Kelvin: ”It is impossible for any system to operate in a cycle that takes heat

from a hot reservoir and converts it to work in the surroundings without at the

same time transferring some heat to a colder reservoir.”

• Clausius: ”It is impossible for any system to operate in a cycle that takes heat

from a cold reservoir and transfers it to a hot reservoir without at the same

time converting some work to heat.”

• Clausius: ”All spontaneous processes are always irreversible.”

Exercise 1. Explain Kelvin’s and Clausius’ statements of the second law of

thermodynamics.

Exercise 2. Argue microscopically why only machines considered in Kelvin’s

statement of the second law of thermodynamics can exist, i.e. no machines that

extract heat from one reservoir and convert it to work.

12 Heat engines & Carnot cycle

First step: we would like to build a heat engine that

• can extract work from a heat reservoir. Why? We know how to create heat

(e.g. burning coal, splitting atoms etc), but the only useful application of heat

is to heat our houses, cars etc. We want to do more with energy, e.g. powering

a elevator, and this usually requires directed energy. Work is exactly this kind

of directed energy. We usually associate with work only volume expansion,

but we could easily use work also as electrical work.
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• runs in cycles such that after one cycle the machine is in the same state as

initially. Why? Simply because only this way we can use the machine over

and over again to extract work. If the state would change each cycle, it would

be hard to predict how much energy can be extracted after many runs.

So, how to construct such a process?

• We need at least one hot thing, we call it heat reservoir, from which we can steal

heat (phrased fancily ”extract heat”). This should be intuitive. In practice we

always use hot things to extract energy from.

• The second law now says that we cannot extract extract work from one heat

reservoir alone and thus we need a second heat reservoir which the machine

can put some heat into.

• So we need one process during which the machine takes up heat from the hot

reservoir, and one process during which the machine releases heat into the

cold reservoir. We also need a process that does work on the surrounding –

the form of energy we aim for with the machine.

• A good choice for a process to take up heat and do work are isothermal expan-

sions. Remember that ideal gases in isothermal expansions convert any heat

that the gas takes up into work (i.e. the volume expansion).

• By symmetry, we can use an isothermal compression to release heat into the

cold reservoir.

• We have to make our machine cyclic. It turns out that adiabats are a good

choice to connect the initial and final states of the hot/ cold isothermal pro-

cesses.

Voila, this is a Carnot machine. The two classic visualizations, a pV-diagram and a

system diagram, look like this:

The work and heat for each process are listed in the table below.
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i → j ∆Ui→j wi→j qi→j

1 → 2 0 w1 < 0 q1 = −w1 > 0

2 → 3 w′
1 w′

1 < 0 0

3 → 4 0 w2 > 0 q2 = −w2 < 0

4 → 1 w′
2 w′

2 > 0 0

The total work and change of inner energy are then sum of those

wtot := w1 + w′
1 + w2 + w′

2,

∆Utot = ∆U1→2 +∆U2→3 +∆U3→4 +∆U4→1

= q1 + w1 + w′
1 + q2 + w2 + w′

2

= q1 + q2 + wtot.

Recall that the inner energy is a state function, thus ∆U = 0 or

−wtot = q1 + q2.

The Carnot machine’s efficiency is defined as the ratio of the work the machine can

output and the heat it takes up from the hot reservoir

ε =
|wtot|
|q1|

=
−wtot

q1
.

Note that this coefficient is denoted by an epsilon, ε, and is distinct from the adia-

batic coefficient, γ. Using above’s result we can relate the ratio with the extracted

heat

ε =
−wtot

q1
=

q1 + q2
q1

= 1 +
q2
q1
.

22



Exercise 1. (2015-2, 3b) Explain the second law of thermodynamics. In your

explanation, include two reservoir/engine diagrams; one that follows the 2nd law,

and another that violates the 2nd law. Using graphical plots of the occupation of

energy levels, and the equation on Boltzmann’s tomb, give a microscopic interpre-

tation of why one of your engines follows the 2nd law, and the other violates it.

Exercise 2. (2015-2, 3; 2018-2, 3)

a) Describe a reversible Carnot Cycle. Include a p vs. V diagram and S vs. T

diagram in which you label and describe the four processes involved. Indicate

the entropy change along each process and the total entropy change along

the closed path. Also include a figure showing the heat, work, cycle, and

temperature reservoirs. Include arrows on your reservoir diagram that indicate

the flow of heat and work. Indicate if the heat is positive or negative (with

respect to engine).

b) Assume the hot reservior is 350 Kelvin, and the cold reservior is 105 Kelvin. If

250 Watts are extracted from the hot reservior of your Carnot engine reversibly

and in a cycle, how much work can be done on the the surroundings per cycle?

c) For the isothermal expansion in the Carnot cycle indicated in a), calculate or

give expressions for w per mole, q per mole, ∆U , ∆H, ∆S (of the system) in

terms of R, T , V2, V1?

d) What is the entropy change of the surroundings after the reversible isothermal

expansion in the Carnot cycle in terms of R, T , V2, V1.

e) Now take the isothermal expansion to be an irreversible process. Give an

expression for the entropy change of the system in terms of R,T , V2 and V1.

Also give an expression for the entropy change of the surroundings in terms of

R,T , V2 and V1.

f) Given for the Carnot cycle that ε = 1 + q2
q1

and
#
T2

T1

$
=

#
V2

V3

$γ−1

,

#
T1

T2

$
=

#
V4

V1

$γ−1

show that the maximum efficiency of a heat engine depends on the temperature

of the two reservoirs as

ε = 1− T2

T1
.

g) Why can the Carnot cycle (or any other heat engine) not convert 100% of

heat to work? Use a diagram of the occupation of quantized energy levels, and

S = k lnW in your answer.
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13 Entropy

13.1 Entropy microscopically and macroscopically

You have learned about three definitions of entropy:

S = kB lnΩ (Microscopic, Boltzmann)

S = −kB
&

i

Pi lnPi (Microscopic, Gibbs)

∆S =

!
δqrev
T

(Macroscopic)

Exercise 1. (2018-2, 1b) What are the units of entropy?

Exercise 2. (2015-1, 1h) Is it possible to have a negative entropy? Why or

why not? Use the equation on Boltzmann’s tomb to clarify.

Exercise 3. (ps3, ex1) Describe entropy by including the words/phrases:

microstates, distribution, energy levels, occupation, configurations. You may use

equations to clarify, but your explanation must be in complete sentences.

Solution Entropie ist eine statistische Entität, die den Zugriff eines Systems auf

verschiedene Konfigurationen quantifiziert (Entartung mehrerer Konfigurationen).

Für eine gegebene makroskopische Energie eines Systems können die möglichen

Mikrozuständen, die von seinen Teilchen besetzt sind, verwendet werden, um die

Entropie mithilfe der folgenden Gleichung zu berechnen

S = −
&

i

Pi lnPi

wobei S die Entropie, kB die Boltzmann-Konstante und Pi die Wahrscheinlichkeit

ist, dass sich das System in einem bestimmten Mikrozustand i befindet. Laut der

Boltzmanngleichung

S = kB lnΩ

ist die Entropie eine Funktion der Entartung Ω für ein isoliertes System, wobei

die Entartung der Anzahl an Mikrozuständen mit der gleichen mittleren Energie

entspricht. Ein Mikrozustand ist eine mügliche Verteilung der Teilchen des System

auf die Energieniveaus, oder - mit anderen Worten - eine mögliche Konfiguration

der Besetzung der Energieniveaus. Makroskopisch betrachtet ist die Entropie eine

extensive Grösse (sie variiert mit der Grösse des Systems), die an die Temperatur

konjugiert ist:

∆S =

!
δqrev
T

Exercise 4. When is Boltzmann’s description of entropy, S = kB lnΩ, valid?

Solution This description Of entropy is valid either when the system is isolated,

thus the probability is equivalent to 1/Ω (1/Q), or when the system is comprised
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Of enough particles such that any fouctuations in the energy Of the system are

negligible. The crux Of both cases is the fact that the energy of the system, Ei , is

constant. We can then set it to zero, which takes all Of our Boltzmann factors to

1, and thus the system’s partition fiunction (the sum of all those factors) now just

becomes the sum of the number Of degenerate states (states at our constant energy

Ei).

Exercise 5. (2015-2, 1a) Why does a human cell burst when it is placed in

pure distilled water? Use the phrase, ”distinguishable microscopic configurations”

and the equation on Boltzmann’s tomb in your answer.

Solution Outside the cell, only one species is present (H2O), but inside the cell, a

wide variety of would increase the number of microstates less drastically. By putting

a molecule of water inside the cell, one could vastly the cell - because of the wide

variety of chemicals, more permutations are available. Compare this to putting a

molecule mixing outside of the cell, where only one type of molecule is present -

the added molecule would increase the number of microstates less drastically. So by

transferring water into the cell (through a semipermeable membrane), the number of

available microstates for the universe will go up, thus increasing entropy S = kB lnΩ.

The S increase is the entropy of mixing (this neglects the electrostatic, enthalpic

contributions from water solvating salts or proteins, which also would lower µH2O

within the cell).

Exercise 6. (2018-2, 1d) Starting with the 1st law and dU = CV dT , prove

mathematically (using cross derivatives) that reversible heat is not a state function,

but entropy is.

13.2 Entropy and Clausius theorem

Clausius theorem can be confusing because of some subtleties. It states that for

general processes %
δq

T
≤ 0 (Clasuius inequality)

and for reversible processes%
δq

T
= 0. (Clausius for reversible)

In general, the Clausius integral is not entropy, i.e.

∆S ∕=
%

δq

T
.

Let me expand on this by explaining the major confusions with Clausius theorem.

• The heat δq could be due to an irreversible heat transfer. Recall that the

definition of entropy, S =
"
δqrev/T , only applies to reversible heat flows.

Only if δq = δqrev the integral equals entropy.
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• Note the difference between
0

and
"
. An integral with

0
is closed, i.e. the

integral begins and ends in the same state. Applied to our setting this means

Clausius inequality only considers such processes which end in the same state

they started with.

• Often, we split the closed integral
0

into two or more subprocesses. For ex-

ample, we could begin in state 1, transfer the system to state 2 and then back

to 1. In this case
0
=

" 2
1 +

" 1
2 , i.e.

0 ≥
%

δq

T
=

! 2

1

δq

T
+

! 1

2

δq

T
.

A special case of Clausius’ inequality states that

dS ≥ δqrev
T

.

This equation can be derived from the above Clausius inequality (see the exercises

below). This special case Clausius inequality is probably the most useful way to

think about the second law of thermodynamics outside the realm of heat engines.

The following table summarizes the second law expressed through the special case

Clausius inequality.

Process / System Isolated Closed, open

Reversible dS = 0 dS = δqrev
T

Irreversible, spontaneous dS ≥ 0 dS > δqirrev
T

This table allows us to determine if a process is reversible or spontaneous = irre-

versible.

Exercise 7. Explain Clausius’ inequality using full sentences and at last one

mathematical equation.

Exercise 8. Starting from the general Clausius inequality, show that

dS ≥ δqrev
T

by choosing reversible/ irreversible paths between two states.

Exercise 9. Using Clausius’ inequality, state the second law of thermodynamics

for isolated systems, closed and open systems.

Solution Combining the second with the first law of thermodynamics isolated,

closed, open system, the second law can be stated as:

dS ≥ 0 (Isolated)

dS ≥ δq

T
=⇒ 0 ≥ dU − T dS + p dV (Closed)

dS ≥ δq

T
=⇒ 0 ≥ dU − T dS + p dV −

&

i

µ dni (Open)
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Exercise 10. (ps6, ex7) A system undergoes a process in which the entropy

change is +2.41 JK−1. During the process, 1.00 kJ of heat is added to the system at

500K. Is the process thermodynamically reversible?

13.3 Computing entropy for system and surrounding

Exercise 11. (2018-2, 2f) Given that dS = δqrev
T and dU = δq + δw, derive

(and calculate) the entropy change of an ideal gas that undergoes an irreversible

Joule free expansion from 1 to 5 liters at 298 Kelvin. Also calculate (do not derive)

∆G for this expansion.

Exercise 12. (ps7, ex4) Consider an isolated system consisting of an ideal gas

at 298K and its surroundings. The ideal gas expands isothermally from a pressure

of 10 bar to 1 bar. Compute associated changes enthalpy ∆H and entropy ∆S

of the ideal gas. What will be the corresponding changes of these thermodynamic

quantities in the surrounding, if you relate them to one mole of gas in the system?

What will be the corresponding thermodynamic quantities for the whole isolated

system ideal gas + its surrounding? Make your computations for the following three

scenarios:

a) The reversible expansion of an ideal gas.

b) The irreversible expansion of an ideal gas against a constant external pressure

of 1 bar.

c) The irreversible expansion of an ideal gas against vaccuum, which is blocked

by a fixed wall at the new total volume that exceeds the initial volume of the

ideal gas ten times (i.e. the gas pressure again changes from 10 bar to 1 bar).

Exercise 13. (fs17, ps4, ex2) Bestimmen Sie für die folgenden Prozesse die

ausgetauschte Arbeit und Wärmemenge zwischen System und Umgebung sowie die

Entropieänderung des Systems und der Umgebung. Sie dürfen annehmen, dass sich

die Gase ideal verhalten. Die molaren Wärmekapazitäten für ein einatomiges ideales

Gas bei konstantem Volumen bzw. konstantem Druck sind

CV =
3

2
R, Cp = CV +R =

5

2
R

a) 1mol Ne (g) wird durch diathermanen Kontakt mit einem idealen Wärmereser-

voir mit T = 380K von 350K auf T = 380K erhitzt. Während des Prozesses

bleibt das Gasvolumen konstant.

b) 1mol Kr (g) wird durch diathermanen Kontakt mit einem idealen Wärmereser-

voir mit T = 380K von 350K auf T = 380K erhitzt. Währen des Prozesses

bleib das Gasdruck konstant.
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c) 1mol He (g) expandiert isotherm und reversibel zum vierfachen Volumen. Der

Anfangsdruck beträgt 2 bar und das System ist in diathermanem Kontakt mit

einem idealen Wärmereservoir mit T = 380K.

d) 1mol Kr (g) expandiert adiabatisch und reversibel zum vierfachen Volumen.

Die Anfangstemperatur beträgt T = 380K.

e) 1mol Ne (g) expandiert isotherm zum vierfachen Volumen gegen einen Aussendruck

von 0.5 bar. Der Anfangsdruck beträgt 2 bar und das System ist in diather-

manem Kontakt mit einem idealen Wärmereservoir mit T = 380K.

f) 1mol He (g) expandiert adiabatisch ins Vakuum (Aussendruck pa = 0bar) zum

vierfachen Volumen.

Exercise 14. (hs16, exam, ex2) Wir betrachten das Gefrieren von 100 g un-

terkühltem Wasser bei der Temperatur T = 269K und dem konstanten Druck von

p−⊖− = 1bar. Dabei gilt im Temperaturbereich zwischen −10◦C und 0◦C für die

Wärmekapazitäten von Wasser und Eis

Cp(Eis) = 38 Jmol−1K−1

Cp(Wasser) = 75 Jmol−1K−1

Die molare Schmelzenthalpie von Eis bei 273K und 1 bar beträgt∆mH−⊖− = 6026 J/mol.

Die Umgebung kann als ideales Wärmebad bei T = 269K betrachtet werden.

a) Bestimmen Sie die Wärmemenge, die es braucht, um 100 g Eis und 100 g un-

terkühltes Wasser von 269K auf 273K zu erwärmen.

b) Bestimmen Sie die entsprechenden Entropieänderungen.

c) Wie gross ist die Entropieänderung des Wasser beim Gefrieren bei 269K?

d) Welche Wärmemenge wird beim Gefrieren des unterkühlten Wassers bei 269K

zwischen Wasser und Umgebung transferiert? Wird dabei die Wärme dem

Wasser entzogen oder beigefügt?

e) Wie gross ist die Entropieänderung der Umgebung?

f) Durch das Gefrieren des Wassers nimmt seine Entropie ab. Wieso läuft dieser

Prozess trotzdem spontan ab?

13.4 Entropy of mixing

Exercise 15. Consider a system with two subsystems A and B separated by a

wall. When you release the wall, the subsystems mix. Compute the entropy for the

mixing.

Exercise 16. (2018-2, 5abc; 2015-2, 4)
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a) Using statistical thermodynamics (the translational partition function), calcu-

late the entropy of mixing when na moles of gas starting in volume Va mixes

with nb moles of gas in a volume Vb. Take N = Na +Nb and V = Va + Vb.

b) Using classical thermodynamics (the 1st and 2nd laws), calculate the entropy

of mixing when Na moles of gas starting in volume = Va mixes with Nb moles

of gas in a volume Vb. Take N = Na +Nb and V = Va + Va.

c) Describe the difference in the entropy of mixing if the calculation is performed

from statistical thermodynamics (question a), or macroscopic thermodynamics

(question b).

14 Third law of thermodynamics

• ”Temperature of 0 K can never be reached”

• At hypothetical absolute zero Kelvin, S = 0.

• As T → 0, S → 0 for every chemically homogeneous substance in a perfect

crystalline state.

• Infinite work is required to reach 0 Kelvin.

Exercise 1. (2018-2, 1e) Describe why is it impossible reach 0 Kelvin.

Solution As 0 Kelvin is approached assymtotically, the specific heat capcity ap-

proaches zero asymotically as well, which prevents the expression: ∆S =
" T2

T0
CP dT

from diverging. As Cp gets increasing small (which is observed experimentally), even

a single photon from radiative heat transfer will then result in a substantial increase

in temperature.

Exercise 2. (2014-1, 1c) Calculate the entropy for an atomically perfect

crystalline lattice at 0 Kelvin.

15 Spontaneity of a process for various conditions

We have learned that at constant energy and volume the entropy of the universe

always increases. The universe is an isolated system, i.e. has constant energy.

Normally, we do not have conditions in which energy remains constant. For example,

a chemical reaction in the lab is usually done at constant pressure and temperature.

It turns out that our helper functions, U,H,A,G, help us to express a conditions

for spontaneity at other conditions (i.e. other constant variables).

Combining the first law and the condition for spontaneity, dS > δqirrev/T , we find

the general condition for spontaneity

dU = δqirrev − p dV < T dS − p dV.
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At constant energy and volume, i.e. dU = 0, dV = 0, this general condition reduces

to the known condition of positive entropy change dS > 0.

However, at dp = 0, dT = 0 we can reformulate the condition

0 > dU − T dS + p dV = d(U − TS + pV ) = dG.

At constant pressure and temperature the Gibbs free energy G is minimized.

The table below lists criteria of spontaneity for other conditions.

Constant Criterium Equation At equilibrium...

U, V (dS)U,V > 0 S = kB lnΩ Ssys is maximized

S, V (dU)S,V < 0 dU = δq + δw Usys is maximized

S, p (dH)S,p < 0 H = U + pV Hsys is maximized

T, V (dA)T,V < 0 A = U − TS Asys is maximized

T, p (dG)T,p < 0 G = H − TS Gsys is maximized

Exercise 1. (2018-2, 2a) From mathematical statements of the 1st and 2nd

laws, derive the general criterion for a spontaneous process.

Exercise 2. (2018-2, 2b; 2015-2, 2a) From mathematical statements of the

1st and 2nd laws, derive the criterion for spontaneous change at constant pressure

and temperature.

Exercise 3. (2018-2, 2c) Derive the criterion for spontaneity at constant

entropy and volume. Does your result describe changes in the system or the sur-

roundings? Explain why your result is a reflection of the change in entropy of the

universe.

Exercise 4. (2015-2, 5a) Recent magic angle spinning NMR (MAS NMR)

experiments performed in the chemistry department at WUSTL suggest activators of

Protein Kinase C (PKC) could have multiple binding modes to PKC C1b regulatory

domains. The MAS NMR data on a large ensemble of 10 x 1017 molecules show

4.7 x 1017 of the ligand molecules adopt a rigid conformation (left, in figure below),

and 5.3 x 1017 are associated with the C1b domain, but are flexible (right, in figure

below).

[A binding mode is defined as: The orientation of the ligand relative to the receptor

as well as the conformation of the ligand and receptor when bound to each other.]

a) Using the condition (equation) for a spontaneous process at constant volume

and temperature, and the equation on Boltzmann’s tombstone, describe how

multiple bound conformations could contribute to tight binding (low value of

Kd).

b) A hypothetical plot of the internal energy (U, not Free Energy) along the

binding pathway is shown below. Indicate the rigid bound conformation with
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an “X”, and circle ALL of the bound states that are mobile at physiological

temperature.
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16 States in statistical mechanics

Microstate: a distinguishable arrangement of the occupation of the quantized energy

levels within the ensemble.

Exercise 1. Explain in complete sentences the concept of a state in statistical

mechanics. What is the difference between micro- and macrostates? Provide an

example for each.

17 Ergodic Hypothesis

The time average of the energy or state for one molecule is equivalent to

the ensemble average of many molecules at a given point in time.

Exercise 1. (2017-1, 1f) State the Ergodic hypothesis in a complete sentence.

Why is this postulate so fundamental to statistical mechanics?

Exercise 2. (2014-1, 1a) Describe why statistical mechanics is often referred

to as the “bridge” between quantum mechanics and thermodynamics.

Exercise 3. (2018-1, 1h) Molecular dynamics simulations use classical equations

of motion to describe molecular motion and structure. It is useful to describe the

entropy determined from such calculations using Gibb’s equation of entropy in terms

of microstate probabilities,

S = −kB
&

i

Pi lnPi,

rather than Bolzmann’s equation in terms of system degeneracy. Using the words

”ergodic hypothesis” and ”sufficient sampling”, explain in wiords why very short

molecular dynamics simulations can not fully describe molecular thermodynamcis,

but lohg simulations can.

18 Boltzmann distribution

Pi(εi) =
exp

-
− εi

kBT

.

/
i exp

-
− εi

kBT

. =
exp

-
− εi

kBT

.

q

Exercise 1. (2014-1, 2c ) Using the words, “degeneracy”, “configuration”, “mi-

crostates”, “occupation”, and “energy levels” explain the equation on Boltzmann’s

tomb.

Exercise 2. (2014-1, 3) The figure below shows a simple model of how a drug

(bryostatin, for example) could sample multiple configurations while it is not bound
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to its protein target (Protein Kinase C, for example). Note, this is slightly different

that what we covered in class, in that the drug can sample the “bound conformation

= 3 dimensional structure”, while it is not bound. There is a favorable energy of

interaction (Eint) when the drug is in the bound conformation AND it is bound to

the protein.

a) Give an explicit expression for the probably of finding the drug bound to the

protein in case 1) which has 5 unbound conformations.

b) Now, assume we design a new drug with an additional covalent bond (dotted

line) that restricts the conformational space, such as in case 2). Give an explicit

expression for the probably of finding the drug bound to the protein in case

2).

c) On the bottom right of the figure, draw the drug with a new covalent bond

(dotted line) that would yield the highest fraction of bound drug.

Exercise 3. (2017-1, 3) Calculate the fractional occupations (Ni/N) of the

energy levels of a particle in a one-dimensional box at a temperature at which the

population of the n=2 level is 0.397 of the population of the n=1 level. The energy

levels of a particle in a one-dimensional box are nondegenerate. The relative energies

of the levels can simply be taken as 1,4,9,16,25, .... (hint... you will want to first

calculate the molecular partition function). (only first 5 energy levels).

Exercise 4. (2014-1, 1f) Calculate the relative population (i.e. relative proba-

bility P−1/2/P1/2) of the 1/2 and −1/2 NMR and EPR spin states at 10K and 300K

to six significant digits. Take the frequency splitting to be 299.710MHz for NMR

and 197.574GHz for EPR. Which of these four relative populations would yield the

highest magnetic resonance sensitivity?

Exercise 5. (2015-1, 1e) The sensitivity of magnetic resonance is directly

correlated to the relative difference in the population of spin states.
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a) Calculate the temperature at which the relative population of the 1/2 and

−1/2 NMR spin states is 1.00093. Take the frequency splitting to be 125.286

MHz for NMR.

b) Calculate the temperature at which the relative population of the 1/2 and

−1/2 EPR spin states is 1.00093. Take the frequency splitting to be 198.457

GHz for EPR.

19 Partition functions

19.1 Molecular/ canonical partition function

q =
&

i

exp

#
− εi
kBT

$
(Molecular)

Q =
&

i

exp

#
− Ei

kBT

$
(Canonical)

Partition function is representative of number of accessible microstates if lowest

energy is set to 0

From molecular to canonical partition function

Q = qN (distinguishable)

Q =
qN

N !
≈

-qe
N

.N
(indistinguishable)

Exercise 1. (2016-1, 1g) For an isolated system, explain why the canonical

partition function is the same as the system degeneracy if the zero of energy is taken

to be equal to the system energy.

Exercise 2. (2016-1, 1e) If the zero of energy is chosen to be the ground

electronic state, what is the value of the molecular electronic partition function of a

hydrogen atom at room temperature? (calculation not required for full credit)

Exercise 3. (2016-1, 1f; 2018-1, 1b) What is the molecular partition func-

tion? What is the canonical partition function? Give your answers BOTH in com-

plete sentences AND in mathematical notation (an equation). What is the difference

between the molecular and canonical partition functions?

Solution The molecular partition function (q) is the sum of all the non-normalized

probabilities (Boltzman factors) for being in a given quantized energy state with an

energy of εi, and can be expressed as
/

i exp(−εi/kBT ) = q. In general, assuming the

same zero of energy, a larger molecular partition function indicates more available

states or lower energy states, while a smaller molecular partition function indicates

fewer available states or higher energy states. While the molecular partition func-

tion describes an individual particle, the canonical partition function (Q) describes
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how an assembly of particles is partitioned among its available energy states. The

canonical partition function (Q) is the sum of all the non-normalized probabilities

(Boltzmann factors) for the assembly being in a given energy state with an energy

of Ei, where Ei is the total energy for all particles in the assembly. It can be ex-

pressed as
/

i exp(−Ei/kBT ) = Q. All partition functions are unitless numbers. All

partition functions normalize Boltzmann factors into probabilities. The canonical

partition function is particularly crucial to understanding statistical mechanics, and

can be used to derive many thermodynamic expressions and values.

Exercise 4. (2018-1, 1cd)

a) Describe the following quantities in words:

e−εi/kT

q
and

e−Ei/kT

Q
.

b) When are the two quantities from above equal?

e−εi/kT

q
=

e−Ei/kT

Q
.

19.2 Degrees of freedom: trans, vib, rot, conf, electronic
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dof energy εi εi/kbT partition function q energy U

trans. 1d h2n2

8ma2
≪ 1

-
2πmkBT

h2

.1/2
a

trans. 3d h2

8ma2
(n2

x + n2
y + n2

z) ≪ 1
-
2πmkBT

h2

.3/2
V 3

2nRT

NMR γ!B0 ∼ 300MHz 10−4 1 + eγ!B0/kBT

EPR γ!B0 ∼ 300MHz 0.1 1 + eγ!B0/kBT

Rotational !2J(J+1)
2I 0.1 2IkBT

σ!2 nRT

Vibrational hν
+
1
2 + v

,
5 e−hν/2kBT

1−e−hν/kBT see below

Electronic too complex 104 gee
De/kBT

Θvib =
hν

kB
, Θrot =

!2

2IkB
,

Uvib = NkB

#
Θvib

2
+

Θvib

exp(Θvib/T )
− 1

$

Total partition function

q = qconf ·
#
2πmkBT

h2

$3/2

V

1 23 4
qtrans

·
#
2IkBT

σ!2

$

1 23 4
qrot

·
5

e−hν/2kBT

1− e−hν/kBT

6

1 23 4
qvib

·
#
ge exp

#
De

kBT

$$

1 23 4
qelec

= qconf ·
#
2πmkBT

h2

$3/2

V

1 23 4
qtrans

·
#

T

σΘrot

$

1 23 4
qrot

·
5

exp
+
−Θrot

2T

,

1− exp
+
−Θrot

T

,
6

1 23 4
qvib

·
#
ge exp

#
De

kBT

$$

1 23 4
qelec

Exercise 5. (2014-1, 1b) Using only words, define the molecular rotation

partition function, qrot.

Exercise 6. (2017-1, 1h) Draw an energy diagram showing the occupation of

rotational energy levels of a typical polyatomic gas at room temperature. Also draw

the fractional occupation of rotational energy levels with respect to the J quantum

number from J=1 to J=12. Which rotational energy level is the most occupied?

Why?

Exercise 7. (2015-1, 1b) Is the lowest energy state always the most populated?

Why or why not? Clarify your answer using a mathematical expression for the

probability of finding a molecule with energy εi in state εi. Also include qualitative

plots of 1) the degenergy of rotational energy levels versus J, 2) the probabilty

of finding a molcule with rotational energy J (excluding degeneracy), and 3) the

product of the two functions.

Exercise 8. (2015-1, 4) The figure below shows the vibrational contribution to

the molar heat capacity of an ideal diatomic gas as a function of reduced vibrational

temperature.
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a) For each of the three points on the curve above indicated with red arrows, draw

ten balls to represent the population/occupation of energy levels. Also draw

an arrow to represent the approximate magnitude of kT (thermal energy) on

each vibrational energy diagram.

b) Circle the vibrational energy diagram that most closely represents the occupa-

tion of vibrational levels of a typical diatomic molecule at room temperature.

c) Calculate the relative population of the first excited state compared to the

ground state vibrational state at 298.15 Kelvin if the energy splitting is 1435 cm−1.

Exercise 9. (2016-1, 3) The normal mode vibrational frequencies of H2O are

3657, 1595, 3756 cm−1.

a) Given 10 balls to represent population in each of the 3 figures below; draw

the occupation of vibrational modes you would expect at a temperture of 10

Kelvin. Calculation is allowed, but not required for full credit. (Note, the

figures below have different scales for energy on the y-axis)

b) Given 10 balls to represent population in each of the 3 figures below; draw the

occupation of the three vibrational modes you would expect at a temperture

of 2,300 Kelvin. Calculation is allowed, but not required for full credit. (Note,

the figures below have different scales for energy on the y-axis)

c) Given 10 balls to represent population in each of the 3 figures below; draw the

occupation of the three vibrational modes you would expect at a temperture

of 10,000 Kelvin. Calculation is allowed, but not required for full credit. As-

sume the water molecules will not break apart, or otherwise decompose at this

temperature. (Note, the figures below have different scales for energy on the

y-axis)
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19.3 Deriving thermodynamic quantities from partition functions

Exercise 10. (2014-1, 2a; 2018-1, 2b; 2018-2, 2e) Starting with A =

U − TS and using A = −kBT lnQ, show that S = −kB
/

i Pi lnPi.

Exercise 11. (2014-1, 2b) Starting from your expression for Entropy S =

−kB
/

i Pi lnPi, derive the inscription on Boltzmann’s tomb.

Exercise 12. (2014-1, 2e) Derive the ideal gas law using the molecular partition

function of a monatomic ideal gas and

p = kBT

#
∂ lnQ

∂V

$

T,n

.

Include an explanation in words of how it makes sense physically, that each of the

terms besides N ,kB,T ,V dropped out of the right hand side. (for full credit, you

must explicity discuss EACH term that drops out, not all of them together)

Exercise 13. (2015-1, 2a) Starting with U =
/

i PiEi derive

U = kBT
2

#
∂ lnQ

∂T

$

V,n

.
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20 Chemical potential and partial pressure

Chemical potential µ ”is like” the molar Gibbs free energy G at constant p, T . Same

conditions for spontaneity apply.

Partial pressure for ideal mixtures of gases and liquids. In liquids, partial pressure

refers to a partial vapor pressure.

pA = xAp (Dalton, gas)

pA = xAp
$
A (Raoult, liquid)

pA = xAKH,A (Henry, liquid)

Chemical potential of ideal mixtures

µX(pure, T, p) = µ−⊖−
X (T ) +RT log

#
p

p−⊖−

$

µX(mixed, T, pX) = µX(pure, T, p) +RT log xX

= µ−⊖−
X (T ) +RT log

#
pX
p−⊖−

$

Equilibrium condition

0 =
&

i

νiµi(mixed, T, pi)
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Exercise 1. Write down the equilibrium condition for a system that contains

molecules A, B, C, of which only A can cross the system’s boundaries. The sur-

rounding contains only molecules A.

Solution Denote the left container by 1, the right by 2. The equilibrium condition

states that the chemical potential of A on both sides equilibrates, i.e. µ1,A = µ2,A.

The chemical potential of B and C does not matter as they are not free to move

across the membrane.

Exercise 2. Using the criterion for spontaneity for processes at constant pressure

and temperature, determine the stable phases in the following diagram. What is the

meaning of the marked temperatures?

Solution The criterion for spontaneity states that the Gibbs free energy is mini-

mized. The molar Gibbs free energy is the chemical potential. Thus, in the picture

above the stable phase is always the one with minimal chemical potential. The

marked temperatures represent the temperatures of phase transition.

21 Gibbs free energy of mixing, ∆Gmix

Exercise 1. (2015-2, 1f) Using plots of Gibbs free energy versus progress of a

reaction, describe how entropy of mixing prevents chemical reactions from proceed-

ing 100% to products.

Exercise 2. (2018-1, 5d) On the diagrams on the following page, draw a

curve representing the Gibbs Free Energy as a function of reaction progress from

0% to 100%. Use an arrow to indicate the position of equilibrium. Note, ∆G◦ is the

summation of the Gibbs free energy of formation of the products or reactions (that

you would look up in tables).
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22 Equilibrium constants

Kp =
7

i

#
pi
p−⊖−

$νi

= exp

#
−∆rxnG

−⊖−

RT

$

Kx =

#
p

p−⊖−

$∆ν

Kp, ∆ν =
&

i

νi

Exercise 1. (2018-2, 4c) Derive the expression for the equilibrium constant,

Kp, for the following reaction in terms of partial pressures pa, pb, pc, pd, reference

pressures, stoichoimetric coefficients, νa, νb, νc, νd, R (gas constant), T (tempera-

ture) and ∆G◦
rxn.

νaA(g) + νbB(g) = νcC(g) + νdD(g)

Exercise 2. (2018-2, 4d) Describe how Kp changes with pressure.

Exercise 3. (2018-2, 4e,f) What are the units of Kp? What are the units

of a solution equilibrium constant, K, for a reaction which converts two moles of

reactants into 1 mole of products?

23 Computing equilibria

Express reaction in terms of ξ, the number of moles that have reacted until the

reaction reaches equilibrium.
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reactant 1 reactant 2 product 1 . . .

initial n1 n2 0 . . .

equilibrium n1 − ξ n2 − ξ ξ

Express ntot in terms of ξ

Equilibrium in gas phase peq =
RT
V · ntot(ξ) solve for ξ

Exercise 1. (2018-2, 4g,h)
1

2
N2(g) +

3

2
H2(g) = NH3(g)

a) The Haber process shown below has a reaction enthalpy of −46.21 kJ/mol, and

a reaction free energy of −16.74 kJ if carried out at 1 bar at 298 K. Calculate

the reaction entropy at 1 bar and 298 K.

b) The Haber process is crucial to maintaining a human population on earth above

1 billion because it yields a form of Nitrogen which can readily be incorporated

into plant metabolism. Determine the fraction of Nitrogen atoms in Ammonia

at thermodynamic equilibrium of the Haber process (1 bar and 298 K) if 1

mole of Nitrogen gas is added to 3 moles of hydrogen gas.

24 Van’t Hoff equation

Models the temperature dependence of equilibrium constant

log
KT2

KT1

= −∆H◦
rxn

R

#
1

T2
− 1

T1

$

Exercise 1. (2018-2, 4i,j,k)

c) Derive the explicit Van’t Hoff Equation (temperature dependence of equilib-

rium) using your result from before.

d) The Haber process is more often carried out at 800 K to accelerate the kinetics.

In lecture, we stated that Kp at 800 K is 0.007. Calculate the equilibrium con-

stant at 800 K using an approximation to the Van’t Hoff Equation (describes

how equilibrium changes with respect to reaction enthalpy and temperature)

which assumes that the heat capacities of the products and reactants are the

same.

e) Describe the diagram below. Draw a thermodynamic cycle which shows how

you can determine the reaction enthalpy at T2, if you already know the reaction

enthalpy at T1. Explain why your calculated Kp using an approximated Van’t

Hoff Equation differs from the experimental value of Kp = 0.007 at 800 K.
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f) Give an estimate of the reaction enthalpy of the Haber process at 800 K.

25 Phase rule

f = N − P + 2

Exercise 1. (fs17, ps12, ex1b) Wann liegt ein reiner Stoff gleichzeitig in allen

drei Aggregatszuständen vor? Können Sie eine allgemeine Aussage über f an diesem

Punkt treffen?

Exercise 2. (fs17, exam, ex3a,c) Ein evakuiertes Gefäss wird zur Hälfte mit

reinem Bezol gefüllt und in ein Wärmebad der Temperatur T gebracht. Nach einer

gewissen Zeit stellt sich ein Gleichgewichtsdruck p(T ) ein.

a) Bestimmen Sie die Freiheitsgrade des Systems mit der Phasenregel

Das Gefäss wird nun mit einer Mischung von Benzol und Toluol befüllt und auf

90 ◦C temperiert. Nehmen Sie an, dass sich die Mischungen sowohl in der Gasphase

als auch in der flüssigen Phase ideal verhalten

b) Bestimmen Sie die Zahl der Freiheitsgrade mit der Phasenregel. Geben Sie

Ausdrücke für die chemischen Potentiale beider Substanzen in beiden Phasen.

Exercise 3. (fs17, ps12, ex1a) Bestimmen Sie die Anzahl Freiheitsgrade f

der folgenden Systeme.

a) H2(g) und O2(g) sind gleichzeitig aber nicht vollständig gelöst in Wasser bei

Raumtemperatur.

b) NaCl gelöst in einem Gemisch aus Wasser und Diethylether bei Raumtemper-

atur, wobei die Lösung nicht gesättigt ist.

c) CaCO3(s) bei einer Temperatur, bei der die thermische Dissoziation in CaO(s)

und CO2 (g) stattfindet, aber nicht vollständig ist.
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d) Eine flüssige Mischung aus Toluol, Dichlormethan und Aceton steht im ther-

modynamischen Gleichgewicht mit der Gasphase. Die Gasphase enthält nur

die Dämpfe der drei flüssigen Substanzen und alle drei Flüssigkeiten sind

vollständig miteinander mischbar. Wie würde die Situation aussehen, wenn

die drei flüssigen Stoffe vollständig unmischbar wären?

e) Eis, Wasser und Wasserdampf.

26 Clausius Clapeyron

General Clausius Clapeyron equation:
dp

dT
=

∆S

∆V
=

1

T

∆H

∆V
with ∆ the difference between the phases

Simplification: gas transitions (often p1 = p−⊖−)

ln

#
p2
p1

$
= −∆H

R

#
1

T2
− 1

T1

$

Exercise 1. (fs17, exam, ex3b) Ein evakuiertes Gefäss wird zur Hälfte mit

reinem Bezol gefüllt und in ein Wärmebad der Temperatur T gebracht. Nach einer

gewissen Zeit stellt sich ein Gleichgewichtsdruck p(T ) ein. Der Gleichgewichtsdampf-

druck wird bei 77 ◦C als 0.91891 bar und bei 82 ◦C als 1.0730 bar gemessen. Bestim-

men Sie aus den Daten die Verdampfungsenthalpie von Benzol.

27 Two-component systems

If you choose the mole fraction on the dew line, xA, then the component on the

bubble line, yA, is fixed. The other way round, if you choose the mole fraction on

the bubble line, yA, then the component on the dew line, xA, is fixed. The following

equation gives an overview over the formulas.

chosen freely fixed other mole fraction pressure

xA yA =
xAp

$
A

p$B + xA(p$A − p$B)
p = p$B + xA(p

$
A − p$B)

yA xA =
yAp

$
B

p$A − yA(p$A − p$B)
p =

p$Ap
$
B

p$A − yA(p$A − p$B)

Exercise 1. Sketch the vapor pressure for an ideal binary mixture of substances A

and B as a function of the mole fraction xA. The pure substance vapor pressures are

p$A = 2bar, p$B = 1bar. Sketch the mole fraction xA for liquid and gaseous phases

as a function of decreasing pressure until pressure p = 1bar is reached.

Solution
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Exercise 2. (fs12, ps11, ex3) Bei 320 K sei eine ideale flüssige Mischung zweier

Substanzen A und B mit molaren Anteilen 15% und 85% im thermodynamischen

Gleichgewicht mit einer idealen Gasphase. Der Dampfdruck des reinen Stoffes A bei

300 K beträgt p$A(300K) = 10 kPa und die näherungsweise temperaturunabhängige

Verdampfungsenthalpie ∆H = 40 kJmol−1. Das chemische Potential des Stoffes A

in der Gasphase ist µ−⊖−
A (320K) = 8 kJmol−1. Der Dampfdruck des reinen Stoffes B

bei 320 K beträgt p$B(320K) = 5.24 kPa.

a) Berechnen Sie den Dampfdruck des reinen Stoffes A bei 320 K. Welche An-

nahmen haben Sie für die Berechnung getroffen?

b) Berechnen Sie den Dampfdruck des Stoffes A über der Mischung und den

Molenbruch von Stoff B in der Gasphase. Ist Stoff A oder Stoff B leichter

flüchtig?

c) Berechnen Sie die chemischen Potentiale des Stoffes A in der Gasphase der Mis-

chung und in der flüssigen Phase. Vergleichen Sie die beiden Werte miteinan-

der.

Exercise 3. (fs14, exam, ex2) Zwei Substanzen A und B sind miteinander in

der flüssigen Phase unbegrenzt mischbar. Wir betrachten ein Phasengleichgewicht

(flüssige Phase + Gas) der Mischung von A und B in einem geschlossenen Volumen

bei der gegebenen Temperatur T0. Nehmen Sie an, dass bei T0 der Dampfdruck

von B kleiner als derjenige von A ist (p$B(T0) < p$A(T0)). Es gibt keine chemische

Reaktion zwischen A und B.

a) Wie viele Freiheitsgrade hat ein solches System? Ist die Information, dass

zwischen A und B keine Reaktion stattfindet, dafür wichtig?
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b) Ist es durch geeignete Wahl der Stoffmengen von A und B in der Mischung

möglich, bei T = T0 einen Gesamtdruck von p0 zu erreichen, so dass p$B(T0) <

p0 < p$B(T0) gilt?

c) Ist es durch geeignete Wahl der Stoffmengen von A und B in der Mischung

möglich, bei T = T0 einen Gesamtdruck von p0 zu erreichen, so dass p0 >

p$A(T0) gilt?

d) Ist es durch geeignete Wahl der Stoffmengen von A und B in der Mischung

möglich, bei T = T0 ein Gleichgewicht zu erreichen, in dem die Partialdrücke

für A und B in der Gasphase gleich zwei zufällig gewählten Werten sind: pA =

p1, pB = p2?
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