Musterlösung zur Übung 12

12.1

a) Unter Vernachlässigung der Fugazitätskoeffizienten stehen K_p , K_x und K_c in folgendem Verhältnis zu K^{\dagger} :

$$K_p = K^{\dagger} \cdot (p^{\mathfrak{S}})^{\sum \nu_i(g)} \tag{1}$$

$$K_x = K^{\dagger} \cdot \left(\frac{p^{\Theta}}{p_{ges}}\right)^{\sum \nu_i(g)} \tag{2}$$

$$K_c = K^{\dagger} \cdot (V_{LM,*})^{-\sum \nu_i}$$
(3)

 p^{\oplus} ist dabei der Standarddruck, p_{ges} der Gesamtdruck des Systems, $V_{LM,*}$ das Molvolumen des reinen Lösungsmittels und ν_i sind die stöchiometrischen Koeffizienten der Reaktionspartner i.

b) Mit einer Dissoziation von $\alpha=1.8\%$ an CO₂ bei 2300 K und folgender Reaktionsgleichung

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$
 (4)

lässt sich davon ausgehen, dass aus $2n \mod CO_2$ nach Einstellung des Gleichgewichts $2(1-\alpha)n \mod CO_2$, $2\alpha n \mod CO$ und $\alpha n \mod O_2$ entstehen. Die Molenbrüche lassen sich über $x_i = n_i / \sum n_i$ ermitteln zu

$$x_{CO_2} = \frac{2n - 2\alpha n}{(2n - 2\alpha n) + 2\alpha n + \alpha n} = \frac{2 - 2\alpha}{2 + \alpha} = \underline{0.9732}$$
 (5)

$$x_{CO} = \frac{2\alpha n}{(2n - 2\alpha n) + 2\alpha n + \alpha n} = \frac{2\alpha}{2 + \alpha} = \underline{1.784 \cdot 10^{-2}}$$
 (6)

$$x_{O_2} = \frac{\alpha n}{(2n - 2\alpha n) + 2\alpha n + \alpha n} = \frac{\alpha}{2 + \alpha} = \frac{1}{2} x_{CO} = \underline{8.920 \cdot 10^{-3}}.$$
 (7)

Über $p_i=p_{ges}x_i$ und den Standartdruck als Gesamtdruck von $p_{ges}=p^{\ominus}=10^5\,\mathrm{Pa}$ erhält man

$$\begin{array}{c|cccc} & x_i & p_i \, [Pa] \\ \hline CO_2 & 0.9732 & 97324 \\ CO & 1.784 \cdot 10^{-2} & 1784 \\ O_2 & 8.920 \cdot 10^{-3} & 892.0 \\ \end{array}$$

Einsetzen in den Massenwirkungsquotienten ergibt für K_p

$$K_p = \frac{p_{CO}^2 \cdot p_{O_2}}{p_{CO_2}^2} = \frac{(1784 \,\mathrm{Pa})^2 \cdot (892.0 \,\mathrm{Pa})}{(97324 \,\mathrm{Pa})^2} = \underline{0.2997 \,\mathrm{Pa}}.$$
 (8)

Mit K[†] = K_p · $(p^{\oplus})^{-\sum \nu_i}$ ergibt sich K[†] = 2.997 · 10⁻⁶ und die freie Standardreaktionsenthalpie zu

$$\Delta_R G^{\oplus} = -RT \ln K^{\dagger}
= -8.314 \,\mathrm{J} \,\mathrm{mol}^{-1} K^{-1} \cdot 2300 \,\mathrm{K} \cdot \ln(2.997 \cdot 10^{-6})
= \underline{243.2 \,\mathrm{kJ/mol}}.$$
(9)

(4 Punkte)

12.2

a) Von 1 mol ursprünglichem PCl₃ und Cl₂ wären $0.515\,\mathrm{mol}$ zu PCl₅ reagiert und $0.485\,\mathrm{mol}$ verblieben. Mit $x_i = \frac{n_i}{\sum_i n_i}$ ergeben sich die Molenbrüche zu $x_{PCl_5} = 0.3468$ und $x_{PCl_3} = x_{Cl_2} = 0.3266$. Mit $p_i = p_{ges} \cdot x_i$ erhält man für die Partialdrücke $p_{PCl_5} = 0.3468\,\mathrm{bar}$ und $p_{PCl_3} = p_{Cl_2} = 0.3266\,\mathrm{bar}$ bei einem Gesamtdruck p_{ges} gleich dem Standarddruck p^{\oplus} von $p_{ges} = p^{\oplus} = 1\,\mathrm{bar}$. Daraus ergibt sich für K_p

$$K_p = \frac{p_{PCl_5}}{p_{PCl_3}p_{Cl_2}} = \frac{0.3468 \text{ bar}}{(0.3266 \text{ bar})^2} = \underline{3.251 \text{ bar}^{-1}}$$
(10)

Mit $K^{\dagger} = K_p \cdot p^{\Theta - \sum \nu_i}$ und $\nu_i = -1$ ergibt sich $K^{\dagger} = K_p \cdot 1$ bar = 3.251. Mit der

Standardreaktionsenthalpie von $\Delta_R {\rm H}^{\ominus} = -72.17\,{\rm kJ/mol}$ und der freien Standardreaktionsenthalpie von

$$\Delta_R G^{\oplus} = -RT \ln K^{\dagger}$$

$$= -8.314 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1} \cdot 473 \text{ K} \cdot \ln (3.251) = \underline{-4.636 \text{ kJ}}$$
(11)

ergibt sich die Standardreaktionsentropie zu

$$\Delta_R S^{\oplus} = \frac{\Delta_R H^{\oplus} - \Delta_R G^{\oplus}}{T}$$

$$= \frac{-72.17 \text{kJ/mol} + 4.636 \text{ kJ}}{473 \text{ K}} = \underline{-142.8 \text{ J mol}^{-1} \text{ K}^{-1}}.$$
(12)

b) Nach van't Hoff gilt (s. Skript Gl. 368)

$$\ln K_2^{\dagger} = \ln K_1^{\dagger} - \frac{\Delta_R H^{\oplus}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \tag{13}$$

$$K_{2}^{\dagger} = K_{1}^{\dagger} \cdot e^{-\frac{\Delta_{R} H^{\Theta}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

$$= 3.251 \cdot e^{\frac{72.17 \cdot 10^{3} J/mol}{8.314 J/mol K} \left(\frac{1}{573 K} - \frac{1}{473 K}\right)} = \underline{0.1322};$$
(14)

$$K_p = 1.32 \cdot 10^{-6} \cdot Pa^{-1}$$
.

Mit $K_{x,2} = K_2^{\dagger} \cdot \left(\frac{p^{\Theta}}{p_{ges}}\right)^{\sum \nu_i(g)}$ und $\nu_i = -1$ erhalten wir $K_{x,2} = K_2^{\dagger} = 0.1322$. Aus

der Reaktionsgleichung ergibt sich mit $x_{PCl_3} = x_{Cl_2}$ und $x_{PCl_5} = 1 - 2x_{Cl_2}$ und somit

$$K_{x,2} = \frac{1 - 2x_{Cl_2}}{x_{Cl_2}^2}$$

$$0 = x_{Cl_2}^2 + \frac{2x_{Cl_2}}{K_r} - \frac{1}{K_r}$$
(15)

$$0 = x_{Cl_2}^2 + \frac{2x_{Cl_2}}{K_r} - \frac{1}{K_r} \tag{16}$$

$$x_{Cl_2} = -K_{x,2}^{-1} + \sqrt{K_{x,2}^{-2} + K_{x,2}^{-1}}$$
(17)

$$x_{Cl_2} = x_{PCl_3} = \underline{0.4845}$$

$$x_{PCl_5} = 1 - 2x_{Cl_2} = \underline{0.0310}$$
 (18)

Das zweite Ergebnis in Gl. (17) mit der negativen Wurzel kann verworfen werden, da negative Molenbrüche unsinnig sind. Mit $p_i = p_{ges} \cdot x_i$ erhalten wir p_{PCl_5} $0.0310 \, \text{bar} \, \text{und} \, p_{PCl_3} = p_{Cl_2} = 0.4845 \, \text{bar}$. Der Partialdruck von PCl₅ ist durch die Temperaturerhöhung von 0.3468 bar auf 0.0310 bar gefallen, was für eine kleinere Ausbeute spricht und den Vorschlag unsinnig erscheinen lässt.

c) Bei der Kompression auf $p_{ges}=2$ bar bei 473 K erhalten wir nach $K_p=K^{\dagger}\cdot p^{\ominus\sum\nu_i}$ für $K_p=K^{\dagger}\cdot 1$ bar $^{-1}=3.251$ bar $^{-1}$. Mit $K_x=K^{\dagger}\cdot \left(\frac{p^{\ominus}}{p_{ges}}\right)^{\sum\nu_i}$ und $\nu_i=-1$ ergibt $K_x=6.506$. Für $x_{Cl_2},\,x_{PCl_3}$ und x_{PCl_5} erhalten wir

$$x_{Cl_2} = -K_x^{-1} + \sqrt{K_x^{-2} + K_x^{-1}}$$

$$x_{Cl_2} = x_{PCl_3} = \underline{0.2674}$$

$$x_{PCl_5} = 1 - 2x_{Cl_2} = \underline{0.4651}.$$
(20)

Damit ergeben $p_{PCl_5} = 0.9302 \ bar$ und $p_{PCl_3} = p_{Cl_2} = 0.5348 \ bar$. Bei Druckerhöhung wird das Reaktionsgleichgewicht, an den Molenbrüchen besser ersichtlich, in Richtung höherer Ausbeute von PCl₅ verschoben. Diese Variante erscheint besser geeignet als die in b).

d) Mit einer Temperaturabsenkung auf 403 K ergibt sich

$$K_{2}^{\dagger} = K_{1}^{\dagger} \cdot e^{-\frac{\Delta_{R}H^{\Theta}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

$$= 3.251 \cdot e^{\frac{72.17 \cdot 10^{3} \text{ J/mol}}{8.314 \text{ kJ/mol K}} \left(\frac{1}{403 \text{ K}} - \frac{1}{473 \text{ K}}\right)} = \frac{78.77}{12.17}.$$
(21)

Es ergibt sich $K_{x,2} = K_2^{\dagger} = 78.77$ und

$$x_{Cl_2} = -K_{x,2}^{-1} + \sqrt{K_{x,2}^2 + K_{x,2}}$$

$$x_{Cl_2} = x_{PCl_3} = \underline{0.1007}$$

$$x_{PCl_5} = 1 - 2x_{Cl_2} = \underline{0.7986}.$$
(23)

Wir erhalten für $p_{PCl_5} = 0.7986$ bar und $p_{PCl_3} = p_{Cl_2} = 0.1007$ bar. Durch die Temperaturabsenkung ist das Gleichgewicht stark zugunsten einer guten Ausbeute an PCl₅ verschoben worden. Diese Variante wurde letztendlich durchgeführt, allerdings aus einem wichtigeren Grund. PCl₅ desublimiert bei 435.65 K. Die beiden anderen Komponenten sind bei dieser Temperatur noch gasförmig. Damit ergibt sich eine einfache Methode dem Gleichgewicht schlagartig das gewünschte Produkt zu entziehen. (5 Punkte)

12.3

Alle Reaktionsgleichgewichte stellen sich bei 1000 K ein, damit sind alle Komponenten stets gasförmig.

a) Die Stoffmenge nach Einstellung des Gleichgewichts ergibt sich mit einer Dissoziation von $\alpha = 0.12\%$ an HCl aus der Reaktionsgleichung über

$$2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g). \qquad (24)$$

Aus $2n \mod HCl$ ergeben sich nach der Dissoziation $2(1-\alpha)n \mod HCl$, $\alpha n \mod H_2$ und $\alpha n \mod \operatorname{Cl}_2$. Mit $x_i = n_i / \sum n_i$ erhält man für die Molenbrüche

$$x_{HCl} = \frac{2n - 2\alpha n}{(2n - 2\alpha n) + \alpha n + \alpha n} = 1 - \alpha = \underline{0.9988}$$

$$x_{H_2} = x_{Cl_2} = \frac{\alpha n}{(2n - 2\alpha n) + \alpha n + \alpha n} = \frac{\alpha}{2} = \underline{6.000 \cdot 10^{-4}}.$$
(25)

$$x_{H_2} = x_{Cl_2} = \frac{\alpha n}{(2n - 2\alpha n) + \alpha n + \alpha n} = \frac{\alpha}{2} = \underline{6.000 \cdot 10^{-4}}.$$
 (26)

(27)

Über $p_i=p_{ges}x_i$ und dem Normaldruck als Gesamtdruck von $p_{ges}=10^5\,\mathrm{Pa}$ erhält man

$$\begin{array}{c|cccc} & x_i & p_i \, [Pa] \\ \hline HCl & 0.9988 & 9.988 \cdot 10^4 \\ H_2 & 6 \cdot 10^{-4} & 60.00 \\ Cl_2 & 6 \cdot 10^{-4} & 60.00 \\ \end{array}$$

Einsetzen in den Massenwirkungsquotienten ergibt für $K_{p,HCl}$

$$K_{p,HCl} = \frac{p_{H_2} \cdot p_{Cl_2}}{p_{HCl}^2} = \frac{(60.00 \,\text{Pa})^2}{(9.988 \cdot 10^4 \,\text{Pa})^2} = \underline{3.609 \cdot 10^{-7}}.$$
 (28)

b) Bei einer Dissoziation von $\alpha = 0.14 \, ppm$ an H₂O erhalten wir über die Gleichung

$$2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g), \qquad (29)$$

dass sich $2(1-\alpha)n \mod H_2O$, $2\alpha n \mod H_2$ und $\alpha n \mod O_2$ gebildet haben. Mit $x_i = n_i / \sum n_i$ ergibt sich für die Molenbrüche

$$x_{H_2O} = \frac{2n - 2\alpha n}{(2n - 2\alpha n) + 2\alpha n + \alpha n} = \frac{2 - 2\alpha}{2 + \alpha} = \underline{1 - 2.1 \cdot 10^{-7} \approx 1}$$
 (30)

$$x_{H_2} = \frac{2\alpha n}{(2n - 2\alpha n) + 2\alpha n + \alpha n} = \frac{2\alpha}{2 + \alpha} = \underline{1.400 \cdot 10^{-7}}$$
(31)

$$x_{O_2} = \frac{\alpha n}{(2n - 2\alpha n) + 2\alpha n + \alpha n} = \frac{\alpha}{2 + \alpha} = \frac{1}{2} x_{H_2} = \underline{7.000 \cdot 10^{-8}}.$$
 (32)

(33)

Über $p_i = p_{ges} x_i$ und $p_{ges} = 10^5 \, \mathrm{Pa}$ erhält man

$$\begin{array}{c|cccc} & x_i & p_i, /[Pa] \\ \hline H_2O & 1 & 1.000 \cdot 10^5 \\ H_2 & 1.4 \cdot 10^{-7} & 1.400 \cdot 10^{-2} \\ O_2 & 7.0 \cdot 10^{-8} & 7.000 \cdot 10^{-3} \\ \end{array}$$

und entsperchend für $K_{p,HCl}$

$$K_{p,H_2O} = \frac{p_{H_2}^2 \cdot p_{O_2}}{p_{H_2O}^2} = \frac{(1.4 \cdot 10^{-2} \text{Pa})^2 \cdot (7 \cdot 10^{-3} \text{Pa})}{(10^5 \text{Pa})^2} = \underline{1.372 \cdot 10^{-16} \text{Pa}}.$$
 (34)

c) Die Gelichgewichtsreaktion des Deacon-Prozesses kann über die beiden Gleichgewichte in a) und b) formuliert werden. Durch Multiplikation von Gleichung (24) mit 2, vertauschen von Produkt- und Eduktseite von Gleichung (24) und addtion beider ergibt sich

$$4HCl(g) + 2H_2(g) + O_2(g) \rightleftharpoons 2H_2(g) + 2Cl_2(g) + 2H_2O(g)$$
 (35)

Die Wasserstoffmenge ist auf beiden Seiten die Gleiche. Wenn man sie weglässt ergibt sich die Reaktionsgleichung des Deacon-Prozesses. Über den Massenwirkungsquotienten erhalten wir

$$K_{p,Deacon} = \frac{p_{H_2}^2 \cdot p_{Cl_2}^2}{p_{HCl}^4} \cdot \frac{p_{H_2O}^2}{p_{H_2}^2 \cdot p_{O_2}} = K_{p,HCl}^2 \cdot K_{p,H_2O}^{-1} = \underline{949.2 \, \text{Pa}^{-1}} \,. \tag{36}$$

(4 Punkte)