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1 The Laws of Thermodynamics

Thermodynamic System is spatially delimited

and characterized by possible changes from outside.

Equilibrium attained in a closed system by waiting.

State determined by state variables, e.g. p, V, T . . .

Process p generally connects (equilibrium) states z1,

z2, but need not proceed along equilibrium states.

• Reversible: ∃p′ : p′ ◦ p = id on whole world.

• Quasistatic: System in equilibrium at all time.

Can be realized reversibly (but no work process).

• Cyclic: z2 = z1.

• Work process: Any exchange of energy seen

from outside can be accounted for as work, i.e.

no flow of heat (adiabatic) or substance.

Any quasistatic p can be reversible, not nec converse

First law of thermodynamics

i) For any two states z1, z2 there is a work process

from z1 → z2 or z2 → z1.

ii) WorkW (z1 → z2) related to the process depends

only on the ordered pair (z1, z2) (not on process).

W (z2 → z1) := −W (z1 → z2) if z2 → z1 impossible.

Energy U(z) is defined relative to a reference state

z0 with arbitrary energy constant U(z0) as

U(z)− U(z0) := W (z0 → z).

Infinitesimal Work

δW =: −p dV (rev quasist work proc)

δW := −p dV (general rev quasist proc)

Heat for general quasistatic processes is defined as

δQ = dU − δW

State variables have exact differential.

0th law Write (U1, V1) ∼ (U2, V2) for thermal equi-

librium. Then ∼ is transitive and defines an equiva-

lence relation (with “temperature” classes).

Heat reservoir is a thermodynamic system with no

work coordinates dU = δQ and large, thus constant

T for finite ∆Q. Equilibrated states form isotherm.

Boyle, Gay-Lussac Ideas gas gas has isotherms

pV = const (Boyle) & U = const (Gay-Lussac)

Second law exists in different formulations:

”No process is possible, the only result of which is

that heat is taken from a system and work is done.”

”There is no cyclic machine that takes heat from

each of the involved reservoirs and does work”.

I.e. there must also be heat given.

Carnot Theorem

i) For all reversible, cyclic machines operating be-

tween two heat reservoirs, Q1

Q2
≡ τ12 > 0 is uni-

versal (i.e. depends only on T1, T2, equivalence

class of reservoirs w.r.t. ∼).

ii) For any cyclic machines, Q1

Q2
≤ τ12.

Proof Any (left) & reversible (right) cyclic machine.

Choose #cycles s.t. Q′2 =

Q2(> 0). Then by 2nd

law: Q′1 ≥ Q1, thus
Q′1
Q′2
≥

Q1

Q2
, and Q′1 ≥ 0.

Absolute temperature Assign T0 > 0 to standard

reservoir 0 (e.g. 273.15 K at triple point of water).

Set T1 = τ10T0 > 0 for any other reservoir 1.

Efficiency W
Q1

inherits Carnot inequality: W
Q1

= 1−
Q2

Q1
≤ η12 ≡ 1− τ−1

12 = 1− T2
T1

(because τ12 = τ10
τ20

).

Clausius For any cyclic process of a system∮
δQ

T
≤ 0 (i)

with equality iff the process is possible without

change of the environment (ii).

Equality holds for quasistatic processes if T & δQ are

defined in the system itself (not just via reservoirs).

Proof Extend system to machine in dashed box.

2nd law: Q0 =∮
δQ0 ≤ 0 ⇒ (i)

Q0 + W0 = 0:

Q0 = 0 ⇒ W0 =

0 ⇒ (ii)

Entropy is defined relative to a reference state z0 as

S(z)−S(z0) =
∫ z
z0

δQ
T with integration along any qua-

sistatic path (needed for exact differential). Hence,

dU = T dS − p dV for quasistatic processes

Entropy Theorem For adiabatically closed systems

and any process z1 → z2 we have S(z1) ≤ S(z2) and

equality iff z2 → z1 is possible without change of

environment.

Proof Adiabatically closed: δQ = 0. Add qua-

sistatic return, Clausius:
∮ δQ

T = S(z1)− S(z2) ≤ 0.
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Equations of state thermal p = p(T, V ) and caloric

U = U(T, V ) equations of state specify thermo-

dynamic properties. They are related by ∂U
∂V

∣∣
T

=

T 2 ∂p
∂T

∣∣∣
T

, hence the entropy S = S(U, V ) equivalently

describes all thermodynamic properties

S = S(U, V )←→

{
p = p(T, V )

U = U(T, V )

by ∂S
∂U

∣∣
V

= 1
T ,

∂S
∂V

∣∣
U

= p
T and solving for U, p.

Derivation Use that dS is exact differential, i.e.

mixed derivatives agree: dS = 1
T (dU + pdV ) =

1
T

∂U
∂T

∣∣
V

dT + 1
T

(
∂U
∂V

∣∣
T

+ p
)

dV , take mixed deriva-

tives 0 = ∂
∂V

[
1
T

∂U
∂T

∣∣
V

]
T
− ∂

∂T

[
1
T

∂U
∂V

∣∣
T

+ p
T

]
V

=

1
T 2

∂U
∂V

∣∣
T
− ∂(p/T )

∂T

∣∣∣
V

Maxwell relations ∂(1/T )
∂V

∣∣∣
V

= ∂2S
∂U∂V = ∂(p/T )

∂U

∣∣∣
V

Equivalent to coupling of thermal and caloric state

equations (both express exactness of dS)

Heat capacity CV := δQ
∂T

∣∣∣
V

= ∂U
∂T

∣∣
V

= T ∂S
∂T

∣∣
V

Entropy (ideas gas) S − S0 = R log V
V0

+∫ T
T0
CV (T )dT

T

Third law In short: lim
T→0

S(T, x) = const. Detailed:

• Existence of limit: S(T, V ) =
∫ T
T0

dτ CV (τ,V )
τ con-

verges at τ = 0. Requires CV → 0 as T → 0

• Independence: lim
T→0

∂S
∂V

∣∣
T

= C, requ ∂p
∂V

∣∣∣
T
→ 0

Thus also CV → 0 and any derivatives of S w.r.t.

state variables. The law can be violated.

2 Thermodynamic Potentials

Introduce amount of substance N : states (U, V,N)

Constrained equilibria state (z1, z2) (isolated sub-

states): U(z1, z2) = U(z1) + U(z2), S(z1, z2) =

S(z1) + S(z2)

Derivation U additive (bc W ), same reference state

Maximum entropy principle ”In a closed sys-

tem the entropy is maximal in complete equilib-

rium.” Comparison between the entropy S(z) and

that S(z1)+S(z2) of all constrained equilibria (z1, z2)

with z1 + z2 = z

S(z) = max
z1,z2

z1+z2=z

[S(z1) + S(z2)]

Derivation

• Remove constraint, call state z1 + z2

• U(z1, z2) = U(z1 + z2) since W = 0

• Thus z1 + z2 = (U1 + U2, V1 + V2, N1 +N2)

• S(z1) + S(z2) = S(z1, z2) ≤ S(z1 + z2) (Super-

additivity) by entropy theorem

• Complete equilibrium for equality

Homogeneity is U(λz) = λU(z), S(λz) = λS(z),

(λ > 0). Functions homogeneous of degree 1 (0) are

called extensive (intensive).

Derivation Apply constrained equilibria λ times,

then λU(z0) = U(z0, . . . , z0) = U(λz0) with reference

state z0 = (U0, V0, N0 = 1). Implies result for any

state z with λz = (λU, λV, λN). Technicality: for λ

integer λz = z+ . . .+z, λ−1z such that λ ·λ−1z = z.

Chemical potential defined as µ := ∂U
∂N

∣∣
S,V

Homogeneity relation

U = TS − pV + µN, S =
1

T
(U + pV − µN)

Thus ∂S
∂U |V,N = 1

T ,
∂S
∂V |U,N = p

T ,
∂S
∂N |U,V = − µ

T . Re-

quires the assumption of continuous differentiability

of S. Physically justified since (U, V,N) determines

p, T (not necessarily conversely, not even at fixed N)

and S strictly monotonically increasing in T > 0

Derivation d
dλ [U(λS, λV, λN)] = d

dλ [λU(S, V,N)]

Concavity of entropy

S(α1z1 + α2z2) ≥ α1S(z1) + α2S(z2)

Physically, concavity means that S(α1z1 + α2z2) is

greater or equal to entropy of constrained equilibrium

S(z1) + α2S(z2). Points on graph S(z) are equilib-

rium points, points below are constrained equilibria.

Equivalent to semidefinitness of hesse matrix

∂2S =

(
∂2S
∂U2

∂2S
∂U∂V

∂2S
∂V ∂U

∂2S
∂V 2

)
i.e. ∂2S

∂U2 ≤ 0, det ∂2S ≥ 0.

Derivation Use superadditivity and homogeneity.

Complete equilibrium in entropy is character-

ized by linear stretch. The following are equivalent:

i) z1, z2 are in equilibr: S(z1 + z2) = S(z1) +S(z2)

ii) S(z) is linear in between z1, z2, i.e. for α ∈ (0, 1)

S(αz1 + (1− α)z2) = αS(z1) + (1− α)S(z2)
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iii) ∇S(z1) = ∇S(z2), i.e. (T1, p1, µ1) = (T2, p2, µ2)

Derivation i) ⇐⇒ S( z1+z2
2 ) = 1

2S(z1) + 1
2S(z2)

• (i)⇒(ii): Tangent at z1+z2
2 must contain z1, z2,

otherwise S(z1) or S(z2) would lie beneath it due

to concavity, which would violate i) S( z1+z2
2 ) =

S(z1)+S(z2)
2 . Alternative: i) means that entropy

at midpoint S( z1+z2
2 ) equals the average entropy

of endpoints S(z1)+S(z2)
2 . Concavity requires the

connection between z1, z2 to be linear.

• (ii)⇒(i): is a special case with α = 1/2

• (ii)⇒(iii): chord is contained in tangent at z1,

hence contains (z2, S(z2)), thus is tangent at z2.

• (iii)⇒(ii): tangent planes at z1, z2 are parallel,

hence must coincide for otherwise lower would

not be above (z1, S(z1)) or (z2, S(z2)).

Gibbs-Duhem relation S dT − V dp + N dµ = 0

Only 2 of intensive variables T, p, µ are independent.

Derivation T dS + S dT = d(TS) = dU + pdV −
µdN + V dp − N dµ = T dS + V dp − N dµ using

homogeneity relation and entropy’s differential dS.

Incomplete equilibria

i) Fixed diathermal wall (exchange of heat only):

T1 = T2 by maximum entropy principle 0 =
∂S(U1−∆U)
∂(∆U) + ∂S(U2−∆U)

∂(∆U) = 1
T1
− 1

T2

ii) Movable adiabatic wall (exchange of volume

only): has p1 = p2, follows from dUi = −p1 dVi,

dU1 + dU2 = 0,dV1 + dV2 = 0.

iii) Exchange of two quantities: full equilibrium

Stability conditions

i) Heat capacity: 0 < CV ≡ ∂U
∂T

∣∣
V
≤ +∞

ii) Isoth compressibility: 0 < κT ≡ − 1
V

∂V
∂p

∣∣∣
T
≤ ∞

Can be used to derive Cp − CV = −T (∂V/∂T )2
p

(∂V/∂p)T
≥ 0

Derivation Concavity of entropy is equivalent with
∂2S
∂U2 ≤ 0,det ∂2S ≥ 0. It is enough to con-

sider N = 1 since α1(U1, V1, N1) + α2(U2, V2, N2) =

N
[
β1(U1

N1
, V1
N1
, 1) + β2(U2

N2
, V2
N2
, 1)
]

with N = α1N1 +

α2N2, βi = αiNi/N . Then:

• 0 ≥ ∂2S
∂U2

∣∣∣
V

= ∂(T−1)
∂U

∣∣∣
V

= −T−2
(
∂U
∂T

)−1

V
, hence

CV ≥ 0. CV = 0 is unphysical, hence CV > 0.

• 0 ≤ det ∂2S = det
∂( 1
T
, p
T

)

∂(T,V ) det ∂(T,V )
∂(U,V ) =

− 1
T 2

1
T

∂p
∂V

∣∣∣
T
· ∂T∂U

∣∣
V

(off-diagonals cancel)

• Cp = ∂(U+pV )
∂T

∣∣∣
p

= ∂U
∂T

∣∣
p

+ p ∂V
∂T

∣∣
p

= ∂U
∂T

∣∣
V

+

(
∂U
∂V

∣∣
T

+ p
)
∂V
∂T

∣∣
p
, use ∂U

∂V

∣∣
T

= T 2 ∂p/T
∂T

∣∣∣
V

to ob-

tain ∂U
∂V

∣∣
T

+ p = T ∂p
∂T

∣∣∣
V

= −T (∂V/∂T )p
(∂V/∂p)T

Pure and mixed phases S differentiable, hence

each point has one tangent. Since surface is concave,

any value of (T, p) determines exactly one tangent

plane, but not necessarily one point of contact, but a

set of points which are in equilibrium are possible:

• Contact at a point: z1 = (U, V ) uniquely deter-

mined by (T, p)

• Contact along a segment: each state with same

(T, p) can be uniquely represented as a mixture

• Contact at a triangle: each state with same

(T, p) can be uniquely represented as a mixture

A mixture is characterized by z =
∑k

i=1 αizi, αi ≥
0
∑k

i=1 αi = 1 with pure phases zi and k = 1, 2, 3 is

for point/segments/triangles.

Entropy surface & phase diagram One segment

correspond to one point in p, T -diagram. Vapour

pressure curve ends in critical pointK. In white areas

(pure phases) entropy strictly concave and (U, V )↔
(T, p) bijective. Liquid and gas cannot strictly be

distinguished.

Gibbs rule

i) The allowed convex contact sets are simplices.

ii) For a system with two coordinates (U, V ) the

number of degrees of freedom (independent in-

tensive variables (T, p)) is f = 3− n, where n is

the number of coexisting pure phases.

Order of phase transitions Second order in critical

point, elsewhere first order.
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2.1 Further Thermodynamic Potentials

dS =
1

T
dU +

p

T
dV − µ

T
dN,S =

1

T
(U + pV − µN)

dU = T dS − p dV + µdN, U = TS − pV + µN

dF = −S dT − p dV + ., F = U − TS = −pV + µN

dH = T dS + V dp+ ., H = U + pV = TS + µN

dG = −S dT + V dp+ ., G = F + pV = µ(T, p)N

dΩ = −S dT − p dV −N dµ,Ω = F − µN = −pV
U, F,G,Ω are conc

∧
ve in T, p, µ.

U,F,H (G,Ω) are con
∨

ex (linear) in V,N .

From S to U Internal energy U determines ther-

modynamics as ∇U = (T,−p, µ) like S(U, V,N).

U(S, V,N) is subadditive, convex and homogeneous

of degree 1 in S, V,N .

Derivation S strictly monotonically increasing in U ,

relation S ↔ U bijective at fixed V,N .

Motivation for other potentials Often const T

and/or p, then maximum entropy principle not di-

rectly applicable.

2.1.1 Free energy

Legendre transformation Map T 7→ −F (T, V,N)

is Legendre transform of U w.r.t. S.

F (T, V,N) = inf
S

[U(S, V,N)− TS]

= U(S, V,N)− TS
= −pV + µN

with S a solution of ∂U
∂S (S, V,N) = T if existent.

dF = dU − T dS − S dT

= −S dT − p dV + µdN

i.e. ∂F
∂T |V,N = −S, ∂F∂V |T,N = −p, ∂F∂N |T,V = µ (one-

sided derivatives where T 7→ F (T ) has a corner).

Remark (Thermodynamics from F ) Map

(S, V,N) 7→ (T, V,N) not invertible if energy surface

contains flat piece, thermodynamics still described by

free energy since Legendre transform invertible.

Concavity F (T, V,N) strictly concave in T > 0 and

convex in (V,N).

Minimum principle for F At fixed total volume

and substance and of fixed temperature the free en-

ergy is minimal in complete equilibrium.

F (T, V1, N1) +F (T, V2, N2) ≥ F (T, V1 +V2, N1 +N2)

Derivation Using max entropy principle:

Intercepts of dashed lines (same slope = 1/T ) express

minimum principle for free energy.

Stability conditions for F

i) From 0 > ∂2F
∂T 2 |V = − ∂S

∂T |V = − 1
T
∂Q
∂T |V = −CV

T :

0 < CV ≤ +∞ with divergence in corner of F (T )

ii) 0 ≤ ∂2F
∂V 2 |T = − ∂p

∂V |T = 1
V κT

: 0 < κT ≤ +∞

F (T, V ) surface has a

corner as function of T

above the line of the triple

point T .

Relation to pressure

−p(T, µ) = inf
ρ

[f(T, ρ)− µρ]

ρ = N
V . Along phase coexistence (linear stretch, fig-

ure above) p, µ are constant in F = −pV +µN , hence
F
V = f(T, ρ) = −p+ µρ has such a stretch in ρ.

2.1.2 Enthalpy

Legendre transform Map −p 7→ −H(S, p,N) is

Legendre transform of U w.r.t. V .

H(S, p,N) = inf
V

[U(S, V,N) + pV ]

= U(S, V,N) + pV

= TS + µN

with V a solution of ∂U
∂V (S, V,N) = −p if existent.

dH = dU + p dV + V dp

= T dS + V dp+ µdN

Concavity H(S, p,N) strictly concave in p and con-

vex in (S,N).
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2.1.3 Gibbs free energy

Legendre transform

G(T, p,N) = inf
S,V

[U(S, V,N)− TS + pV ]

= inf
V

[F (T, V,N) + pV ]

= inf
S

[H(S, p,N)− TS]

= µ(T, p) ·N
with V a solution of ∂U

∂V (S, V,N) = −p if existent.

dG = dU − d(TS) + d(V p)

= −S dT + V dp+ µ dN

Concavity G(T, p,N) strictly concave in T, p and

linear in N .

Relation to chemical potential µ µ is the Gibbs

free energy per mole.

G surface has a ridge (1-parameter family of cor-

ners) above the transition curves seen in the phase

diagram.

2.1.4 Grand canonical potential

Legendre transform

Ω(T, V, µ) = inf
S,N

[U(S, V,N)− TS − µN ]

= inf
N

[F (T, V,N)− µN ]

= −p(T, µ) · V
dΩ = −S dT − p dV −N dµ

Concavity Ω(T, V, µ) concave in T, µ, linear in V .

2.2 Van der Waals gas

Van der Waals equation generalizes ideal gas(
p+

a

V 2

)
(V − b) = RT

by taking molecule interactions into account.

Derivation

• Use potential φ(r): repulsive at small r and at-

tractive at large r with minimum in between.

• Modify ideal gas p′V ′ = RT

• Volume is effectively smaller due to the presence

of other molecules, V ′ = V − b
• Real molecules attract each other, hence

molecules near the wall will be drawn inward.

Proportional to number of particles near wall

and of neighbors, hence quadratic in density

1/V . Thus p′ = p+ a
V 2 .

Physical problem Isotherms violate stability condi-

tions and convexity of F (T, V ) in parts where ∂p
∂V |T >

0 that occur for T < T0.

Maxwell construction Replace unphysical non-

convex parts of F (T, V ) by convex hull, i.e. by a

linear part between point 1 and 2 in the following

figure. This corresponds to a phase coexistence seen

in the free energy surface plot earlier. Within this

region, p becomes a constant (in V ) called the va-

por pressure p = p∗(T ), determined by p∗(V2−V1) =

−(F2 − F1) =
∫ 2

1 p dV .

Critical point is stationary ∂p
∂V |T = p1(T0) = 0

and of inflection ∂2p
∂V 2 |T = p2(T0) = 0 for pn(T ) =

∂np
∂V n |V=V0(T ). Additionally p3(T0) < 0. Parameters

are given by V0 = 3b, RT0 = 8
27
a
b , p0 = 1

27
a
b2

. Thus,

the following quotient is universal
RT0

p0V0
=

8

3
.

Reduced
(
p̃+ 3

Ṽ 2

)
(3Ṽ − 1) = 8T̃ , p̃ = p

p0
, Ṽ , T̃ = ...

Behavior near critical point (Landau)

p(T, V ) = p0(T ) + p1(T )v + p3(T )v3 + . . .

F (T, V ) = F0(T ) + F1(T )v2 + F4(T )v4 + . . .

with Fn+1(T ) = −pn(T )
n+1 and F2(T0) = 0, F4(T0) >

0. This energy is postulated in Landau theory of

second order phase transitions. For van der Waals

gas F1(T ) = −1, F2(T ) = 3(T − 1), F4(T ) = 3/8 at

leading order.

Derivation Taylor p(T, V ) in V for T ≈ T0 using

relative v = V − V0(T0), then F (T, V ) = F0(T ) −∫ V
V0(T ) p(T, V

′) dV ′.
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3 Classical Statistical Mechanics

3.1 Microcanonical ensemble

Classical system is described by

i) phase space Γ = (Λ × R3)N s.t. x ∈ Γ =

(x1, . . . , xN ) with xi = (qi, pi), equipped with

ii) Hamiltonian H =
∑N

i=1
p2
i

2m +
∑

i<j ϕ(qi − qj)

States are distributions over phase space elements.

dµ(x) = ω(x) dx (Macrostates, mixed)

x0 ∈ Γ (ω(x) = δ(x− x0)) (Microstates, pure)

Their time evolution is given by the Hamiltonian flow

x 7→ φt(x) through ωt(x) = ω(φ−t(x)).

Observables are functions f on the phase space Γ.

Liouville theorem states that Dφt = 1, i.e.∫
φt(Ω)

dy =

∫
Ω

dx

Expectation values simplify by Liouville theorem

〈f〉t =

∫
Γ
ω(x)f(φt(x)) dx =

∫
Γ
ωt(x)f(x) dx

3.1.1 Equilibrium: Ergodic hypothesis

Poincare Recurrence A pure state φt(x0) comes

arbitrarily close to x0 ever and ever again.

Consequence No convergence of 〈f〉t as t→∞. Al-

ternate definition of the equilibrium value is needed.

Time average (Birkhoff) of an observable f

〈f〉 = lim
T→∞

1

T

∫ T

0
〈f〉t dt

exists for any ω (Birkhoff theorem).

The state average is defined correspondingly as

ω = lim
T→∞

1

T

∫ T

0
ωt dt = lim

T→∞
ωT .

Equilibrium We interpret 〈f〉 as the expectation

value in thermodynamic equilibrium.

Energy shell is the φt-invariant set

Γ(E) = {x ∈ ΓN | H(x) = E}.

Ergodic hypothesis Almost all orbits of energy E

come arbitrarily close to any point on Γ(E) ever and

ever again, and they do this uniformly often.

Precisely: dµE(x) (defined below) is the unique prob-

ability measure on Γ(E) that is invariant under φt.

Microcanonical ensemble

dµE(x) = Σ(E)−1δ(H(x)− E) dx (ensemble)

Σ(E) =

∫
Γ
δ(H(x)− E) dx (partition function)

Consequence For an arbitrary distribution on Γ(E),

i.e. of form dµ = ω̃(t)δ(H(x) − E) dx, time average

is equal to ensemble average

lim
T→∞

1

T

∫ T

0
〈f〉t dt =

∫
Γ
f(x) dµE(x).

Thus, ω = ωE (time avg. = microcan.) for any ω.

Derivation Equate l.h.s. to
∫

Γ f(x)ω(x) dx. Then

ωt = ω, thus ω = ωE (uniqueness in ergodicity).

Energy distribution of a general state is

WE =

∫
ω(x)δ(H(x)− E) dx.

The resulting thermodynamic equilibrium

〈f〉 =

∫
dEWE

∫
Γ
f(x) dµE(x),

is solely determined by WE , as in thermodynamics.

Boltzmann Postulate ”The equilibrium state of a

system of energy E is the microcanonical ensemble.”

Remarks

• (Failure of ergodic hypothesis) e.g. for sys-

tems with more constraints than just E = const.

Replace Γ(E) appropriately.

• (Macroscopic observables) approach average

fast and deviate little, perceived “approach to

equilibrium”. Ergodic time scale is experimen-

tally irrelevant (∼ age of universe).

3.1.2 Equilibrium: Entropy & Gibbs varia-

tional principle

Entropy of a state ω dx is defined as

S(ω) = −k
∫

Γ
ω(x) logω(x) dx.

Remarks

• (Dimensions) Replace logω  log h3Nω(x) (h:

units of action). Only adds constant to S, irrel-

evant due to normalization. May be understood

as partitioning Γ into cells.

• (Uncertainty) S measures the uncertainty we

have about the microstate given the macrostate.

It is the only additive and normalized measure.

• (Motivation) For the classical case of N par-

ticles in k boxes, − log Ω = −N
∑k

i=1
Ni
N log Ni

N

7



with Ω = #microstates of the macrostate.

Stirling’s formula log n! ≈ n log n− n for n→∞

Useful log N !∏
ni!
≈ −

∑
ni log ni

N if
∑
ni = N

Properties of entropy

i) (Strict Concavity) For any ω1,2,

S(λω1 + (1− λ)ω2) ≥ λS(ω1) + (1− λ)S(ω2),

with equality iff λ = 0, 1 or ω1 = ω2.

ii) (Separation) For ω a state on Γ1 × Γ2, the

marginal distributions ωi =
∫
ω(x1, x2) dxi are

states on Γi (i = 1, 2) and fulfill

S(ω) ≤ S(ω1) + S(ω2).

“=” iff ω(x1, x2) = ω1(x1)ω2(x2) (uncorrelated).

iii) (Hamiltonian conservation) S(ωt) = S(ω)

iv) (Increase with time) S(ωnT ) ≥ S(ωT ) for T >

0, n ∈ N.

Proof

i) Follows from strict concavity of t 7→ −t log t.

ii) Start with S(ω) − S(ω1) − S(ω2), enter the ωi
definitions (outside log) and pull log’s together.

Use t log t ≥ t− 1 and normalization of ω, ωi.

iii) Use ωt(x) = ω(φ−t(x)), substitute y := φ−t(x).

iv) Like in (iii): S
(

1
T

∫ T+t0
t0

ωt dt
)

=

S
(

1
T

∫ T
0 ωt dt

)
. Apply (i), induction.

Arrow of time Imagine one ordered state x and one

unordered state y. For these pure states the entropy

is always −∞ (point in phase space, volume is zero)

as S(x) = log |{x}| = −∞. Define macroscopicly

similar states Γf(x) = {x′ ∈ Γ | |f(x′) − f(x)| ≤ ε}
for some macroscopic observable f . The entropy for

a microstate S(x) = k log |Γf(x)| is then well-defined.

Note that φt(Γf(x)) 6= Γf(φt(x)) and due to Liouville

vol(Γf(x)) = vol(φt(Γf(x))). Irreversibility is con-

tained in the initial condition, not within the laws.

Gibbs variational principle Among all states with

fixed E,N, V = |Γ|, the equilibrium state has the

maximum entropy.

Microcanocial ensemble maximizes entropy,

thus all states of fixed E,N, V are equiprobable.

Proof

• Technical difficulty: S of ω(x) = ω̃(x)δ(H(x) −
E) is −∞ (because Γ(E) = 0)). Replace δ with

δε(H(x)− E) = 1
2εθ(|H(x)− E| < ε).

• Use δε log δε = −(log 2ε)δε to show that S(ω2)−
S(ω1) → S̃(ω̃2) − S̃(ω̃1) for ε → 0 (any ω1, ω2)

(split up in 2 terms: ωi (vanishes) & ωi logωi).

Here, S̃(ω̃) = −k
∫

dxδ(H(x)−E)ω̃(x) log ω̃(x).

• Drop tilde. Set ω2(x) = Σ(E)−1 (microcanon.).

• Use normalization to pull out ω: S(ω) − S =

−k
∫

dxδ(H(x)− E)ω(logω − log Σ(E)−1)

• Use t log t ≥ t− 1 with t = ω
Σ(E)−1 : integrand ≥

δ(. . . )(ω − Σ(E)−1). Integral 0 (normalization).

Entropy in microcanonical ensemble as in proof

above we find: S = k log Σ(E) (bzw. k log Σ(E)
h3N ).

Approximation by θ-function For large N ,

ω dx = φ(E)−1θ(H(x)− E) dx

φ(E) =

∫
H(x)≤E

dx

yields the same S as the microcanonical ensemble.

Inependent of this, d
dxθ(x) = δ(x) can be used.

Entropy of ideal gas (Sackur-Tetrode)

S(U, V,N) = kN

(
log

(
V

N
·
(

4πmU

3Nh2

)3/2
)

+
5

2

)
Derivation

• Calculate Σ = d
dU

∫
{H≤U} dpdq: H =

∑N
i=1

p2
i

2m ,

thus Σ = V N d
dUA3N (2mU)3N/2 with Ak =

πk/2

Γ( k
2

+1)
volume of unit ball in Rk.

• A priori: S = k log Σ(E)
h3N .

• Large system (U, V,N): neglect intensive term.

• In thermodynamics: extensive normalization.

Here: can add CN . Same result as Σ Σ
N ! .

• Calculate S = k log Σ(E)
N !h3N using Stirling.

Gamma function Γ(n+ 1) = n!

Comparison to thermodynamics requires k :=
R
NA

, cV := Cv
N = 3

2k.

Then: k−1S(U, V,N) = ncv log U
U0

+N....

Remarks

• (QM) result agrees for large T and h = 2π~.

• (3rd law) is violated as S → −∞ for T → 0 at

fixed V,N since 1
T = ∂S

∂U = 3
2k

N
U (⇒ U → 0).

• (Interpretation of Gibbs normalization)

Σ Σ
N ! is the indistinguishability of particles.

• (Entropy of mixtures) of 2 particle types

(N1+N2 = N) is S(U, V,N1, N2) = S(U, V,N)−
k
∑

iNi log Ni
N . Understood by N !  N1!N2! in

derivation above: k log N !
N1!N2! ≈ −k

∑
Ni log Ni

N .
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3.2 Equipartition theorem

Energy equipartition theorem For a Hamiltonian

system (x1, . . . , x2f ) = (q1, p1, . . . , qf , pf ) with f de-

grees of freedom and H(x)→ +∞ for x→∞:〈
xi
∂H

∂xj

〉
= δijkT.

Proof

•
〈
xi

∂H
∂xj

〉
= Σ−1 d

dE

∫
H(x)≤E dxxi

∂H
∂xj

• Rewrite: xi
∂H
∂xj

= ∂
∂xj

(xi(H(x)−E))−δij(H(x)−
E). First term 0 (integration in xj , boundaries).

• Thus
〈
xi

∂H
∂xj

〉
= δij

φ(E)
Σ(E) = δij

d
dE (log φ(E))−1.

• Enter S ≈ k log φ(E), ∂S
∂E = 1

T .

Applied form For a typical Hamiltonian H =∑
i,k g

ik(q1, . . . qf )pipk + V (q1, . . . qf ) (gik = gki) fol-

lows:
〈∑

k g
ikpipk

〉
= 1

2kT (i = 1, . . . f), where the

l.h.s. is kinetic energy of i-th degree of freedom (if

gik diagonal). Similarly for potential energy.

Example virial theorem For H(q, p) = K(p) +

V (q) with K(λp) = λ2K(p), V (λq) = λrV (q): 〈K〉 =
f
2kT (see above) and 〈V 〉 = 1

r

∑f
i=1 qi

∂H
∂qi

= f
r kT .

Thus 2 〈K〉 = r 〈V 〉.

Example ideal diatomic gas has energy (center of

mass system) P 2

2M + 1
2m

(
p2
r +

p2
θ
r2 +

p2
φ

r2 sin2 θ

)
+ V (r)

i) r = const: f = 3+2 (transl + rot) per molecule,

thus 〈H〉 = 5
2NkT , hence cV = 5

2R

ii) Small osc.: f = 3+2+1 (+ osc), cV =
(

6
2 + 1

2

)
R.

1
2 accounts for degree of freedom in potential.

Remark The transition (i) to (ii) is discontinuous in

cV . This issue is resolved in QM-treatment.

3.3 Canonical ensemble

Canonical ensemble is equilibrium state of system

with fixed V,N and given T .

ω(x) = Z(β)−1e−βH(x)

Z(β) =

∫
Γ
e−βH(x) dx

Derivation

• Thermal contact to reservoir V ′ � V , N ′ � N .

Neglect interactions: H0(x, x′) = H(x) +H ′(x).

• Combined system “0” has fixed E, V,N , thus

microcan. state. Marginalize that: ω(x) =
1

Σ0(E)

∫
Γ′ dx

′δ(H(x) +H ′(x)− E) = Σ′(E−H(x))
Σ0(E) .

• Rewrite Σ′(E −H(x)) = ek
−1S′(E−H(x)) because

S′ slowly varying, can Taylor around E.

• Neglect O( 1
N ′ ) terms (determine order using S,

E extensive): S′(E−H(x)) ≈ S′(E)− ∂S′

∂E ·H(x).

• ω(x) = Σ′(E)
Σ0(E)e

−βH(x), define Z as normalization.

Gibbs & canonical ensemble Among all

macrostates of fixed V,N and energy expectation

〈H〉, the canonical ensemble has maximal entropy.

Entropy in canonical ensemble S(β) = kβ 〈H〉+
k logZ(β) (by taking logω, inserting into S).

Free energy in canonical ensemble Partition

function determines thermodynamics via F (T, V,N):

F (β) = − 1

β
logZ(β)

(
U − TS = 〈H〉 − 1

kβ
S

)
This is analogous to S with φ (microcanon.).

Mean energy in canonical ensemble

〈H〉 = U = − ∂

∂β
logZ =

∂

∂β
(βF )

Derivation U =
∫

dxH(x)e−βH(x)∫
dxe−βH(x) =

(
−∂Z
∂β

)
/Z

Fluctuation identity of energy U〈
(∆H)2

〉
=
〈
H(x)2

〉
− 〈H(x)〉2 = −∂U

∂β
=

∂2

∂β2
(βF )

CV =
∂U

∂T
= − 1

kT 2

∂U

∂β
=

1

kT 2

〈
(∆H)2

〉
> 0

Derivation Take −∂U
∂β

∫
dxH(x)e−βH(x)∫

dxe−βH(x) ( fraction).

Thermodynamical consequences CV > 0 is ther-

modyn. stability condition. Implies: U(T ) increases

monoton., S(U) & βF (β) & F (T ) are concave.

Derivation ∂2S
∂U2 = − 1

T 2
∂T
∂U . 1

k
∂2F
∂T 2 = β3 ∂2

∂β2 (βF ).

Magnitude of fluctuations Usually (if CV exten-

sive for N,V → ∞, i.e. CV
N bounded), fluctuations

are small, thus the energy appears sharp macroscop-

ically. However, fluctuations are large near triple

point.〈
(∆H)2

〉1/2 ∝ N1/2 � N (usually)〈
(∆H)2

〉1/2 ∝ N (kink in F , e.g. triple point)

Derivation Usually: CV ∝ N . Triple point: energy

of phases differs extensively,
〈
(∆H)2

〉
, CV ∝ N2.

Remark (thermodynamics) Thermodynamics:

CV has δ-singularity from ∂F
∂T -discontinuity. Here:

δ is approximate, height O(N2), width O(N−1)

(
∫ T0+ε
T0−ε CV dT = O(N)).
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Equivalence of ensembles The diagram below con-

nects the ensembles and commutes for large systems.

Σ(E) Z(β)

k−1S(E) −βF (β)

Laplace

log log

Legendre

Derivation

• Legendre: −βF (β) = −β inf
S

(U(S) − TS) =

sup
E

( 1
kS(E)− βE)).

• Z(β) =
∫

dE eg(E), g(E) = −βE + log Σ(E).

Concavity ⇒ saddle point approximation (i.e.

Taylor g(E) to 2. order around maximum

(g′(E0) = 0, g′′(E0) = −(kT 2CV )−1)) gives

Z(β) = e−βE0+ 1
k
S(E0)

∫
dE exp

(
− (E−E0)2

2kT 2CV

)
.

• From g′(E0) = 0: 1
k

dS
dE

∣∣
E0

= β. I.e. E0 corre-

sponds to β, hence Z(β) = e−βF (β)
√

2πkT 2CV .

• With CV ∝ O(N) (more careful at phase transi-

tions): logZ(β) = −βF (β) +O(logN).

3.4 Grand canonical ensemble

Grand canonical ensemble is equilibrium state of

system with fixed V and given T , µ.

ω(N, x) =
1

Ξ(β, µ)
e−β(H(x)−µN)

Ξ(β, ν) =
∞∑
N=0

∫
ΓN

dxe−β(H(x)−µN)

=

∞∑
N=0

zNZN (β), z = eβµ (fugacity)

Derivation

• Reservoir: thermal contact & material exchange.

• Marginalize canonical ensemble of total system

ω(x,N) = 1
Z0(β)

∫
ΓN0−N

dx′eH
′(x′)−H(x).

• Expand F ′(β,N0 −N) ≈ F ′(β,N0)− µN .

Gibbs & grand canonical ensemble Among

all macrostates of fixed V and expectation values

〈H〉 , 〈N〉, the grand canonical ensenmble has max-

imal entropy.

Entropy in grand canonical ensemble S(β, µ) =

kβ(〈H〉 − µ 〈N〉) + k log Ξ(β, µ) (take logω).

Grand canonical potential Ξ determines thermo-

dynamics via p with βp(β, µ) = 1
V log Ξ(β, µ) from

Ω(β, µ) = − 1

β
log Ξ(β, µ) (U − TS − µN)

Particle number in grand canonical ensemble

N = −∂Ω
∂µ = 1

β
∂
∂µ log Ξ(β, µ).

Alternatively show this like U in canonical ensemble.

3.5 Real classical gas

Real classical gas N identical interacting particles.

H =

N∑
i=1

p2
i

2m
+

1...N∑
i<k

φ(xi − xk), (xi ∈ Λ),

ZN (β) =

∫
ΓN

dx

N !
e−β

∑
i<k φ(xi−xk)︸ ︷︷ ︸

=:W (x)︸ ︷︷ ︸
=:ẐN (β)

·
∫
R3N

dp e−β
∑
i

p2i
2m︸ ︷︷ ︸(

2πm
β

)3N/2

We calculate ẐN (β) via a cluster expansion of W (x).

Definitions for cluster expansion

i) (C1, . . . , Cn) = partition of {1, . . . , N} in subsets

C1, . . . , Cn (“clusters”)

ii) xC = (xi1 , . . . , xil) if C = (i1, . . . , il)

iii) |xC | = maxi,k∈C |xi − xk|: diameter of C

iv) d(xC1 , xC2) = mini∈C1,k∈C2 |xi − xk|: distance

between C1, C2

Cluster expansion Assume φ(y) = 0 for |y| > a (in-

teraction range is finite). Then W (x) has the cluster

property: for any 2-cluster partition (C1, C2) with

d(xC1 , xC2) > a one has W (x) = W (xC1)W (xC2).

We can expand in clusters:

W (x) =
∑

(C1,...,Cn)

U(xC1)U(xC2) . . . U(xCn).

This is recursive definition of Ursell function U (the

part of W that can’t be credited to subsystems of x):

U(x) = W (x)−
∑

(C1,...,Cn)
n>1

U(Cx1) . . . U(xCn)

(U(x1) = W (x1) = 1, U(x1, x2) = W (x1, x2)−1, ...)

Lemma

i) If there exists a partition (C,C ′) such that

d(xC , xC′) > a, then U(x) = 0.

ii) This is the case in particular if |x| > (N − 1)a.

Proof

i) Induction. N = 1: Nothing to prove. Inductive

step: U(x) +
∑

(D1,...,Dk),k>1 U(xD1 , . . . , xDk) =

W (x) = W (xC)W (xC′) =
∑

(C1,...,Cn)

∑
(C′1,...,C

′
m)

....
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Thus U(x) = −
′∑

(D1,...,Dk)
k>1

U(xD1)...U(xDk) (sum

over partitions that are not refinements of

(C,C ′)). There is at least one Dj that con-

tains particles from both C and C ′. Then

U(xDj ) = 0 by applying induction assumption

to (Dj ∩ C,Dj ∩ C ′). Thus U(x) = 0.

ii) There is always a partition (C,C ′) s.t.

d(xC , xC′) ≥ |x|/(N − 1).

Grand canonical partition function for real (in-

teracting) classical gases using z = eβµ ·
(

2πm
β

)3/2

Ξ = exp

(
V

∞∑
l=1

blz
l

)
,

bl(T ) =
1

l!

∫
R3(N−1)

dy2...dyl U(0, y2, ...yN )

Derivation

• W (x) & U(x) translation invariant, intro-

duce yi = xi − x1. Then
∫

ΓN U(x) =∫
Γ dx1

∫
(Γ−x1)N−1 dy2...dylU(0, y2, ...yN ).

• From lemma: if distance x1 ↔ ∂Γ is > (N−1)a,

then we can replace (Γ − x1)N−1  R3(N−1).

Boundary layer negligible for large Γ. Thus:
1
N !

∫
ΓN U(x) = V · bN (T ).

• Let nl = number of clusters of l particles, li =

number of particles in Ci.

• Thus ẐN = 1
N !

∑
(C1,...,Cn)

∏n
i=1 li!(V bli).

• Number of distinct ways of grouping labels

1, . . . , N into bins of nl l-clusters: N !∏
l nl!(l!)

nl

(permute each cluster of same number of parti-

cles ni!, permute particles within cluster (l!)nl).

Constraint
∑∞

l=1 lnl = N (?).

• ẐN =
∑′

(n1,n2,...)
1∏

l nl!(l!)
nl

∏n
i=1 li!(V bl · l!)nl =∑′

(n1,n2,...)

∏
l

(V bl)
nl

nl!
(
∑′

: constraint (?)).

• Grand canonical ensemble: Ξ =
∑∞

N=0 z
N
0 ZN =∑∞

N=0 z
N ẐN =

∑
(n1,n2,...)

∏∞
l=1

(V blz
l)nl

nl!
=∏∞

l=1

∑∞
n=0

(V blz
l)n

n! =
∏∞
l=1 e

V blz
l

(removed con-

straint)

Virial expansion Equation of state follows as

p

kT
=

∞∑
l=1

al(T )

vl
,

∞∑
l=1

blz
l =

∞∑
l=1

al

( ∞∑
k=1

kbkz
k

)l
.

2nd equation: a1 = 1, a2 = −b2, a3 = 4b22 − 2b3, ...

Derivation

• p
kT =

∑∞
i=1 bl(T )zl from βp = 1

V log Ξ.

• 1
v =

∑∞
i=1 lbl(T )zl from 1

v = N
V = 1

βV
∂
∂µ log Ξ

and ∂
∂µ = βz ∂

∂z .

Relation to ideal gas z → 0 (µ → −∞) leads

to the ideal gas p
kT = 1

v . Corrections are obtained

iteratively by computing the lowest cluster integrals,

starting with b2(T ) = 1
2

∫
d3x(e−

φ(x)
kT
−1).

Comparison to van der Waals p
kT = 1

v−b̃−
ã/kT
v2 =

1
v +

(
b̃− ã

kT

)
1
v2 + ... gives a2(T ) = b̃− ã

kT .

Example hard-core interaction at large T :

e−φ(x)/kT − 1

{
= −1, (|x| ≤ r0),

≈ −φ(x)
kT , (|x| > r0).

We then find

a2 = −b2 =
1

2

(
4π

3
r3

0

)
︸ ︷︷ ︸

b̃

+
1

kT
· 1

2

∫
|x|≥r0

φ(x) dx︸ ︷︷ ︸
−ã

.
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4 The Ising Model

4.1 The model

Setup Square lattice Λ = (1, 2, ..., i, ..., N) with peri-

odic boundary conditions and spins si = ±1 at every

lattice site i. The system has 2N spin configurations:

s = (s1, s2, . . . , sN ).

Generalizations: d dimensions, different geometries.

Energy for a configuration s

H(s) = −1

2

∑
ik

Jiksisk − h
∑
i

si

Hom. external magnetic field h, couplings Jki = Jik.

Example (anti-)ferromagnet Couplings

Jik =

{
J if i, k nn

0 otherwise

For J > 0 ferromagnet, for J < 0 antiferromagnet.

Canonical partition function

Z(β, h,Λ) =
∑
s

e−βH(s) = e−βF (β,h,Λ)

Free energy is real-analytic in β, h. Only in the

thermodynamic limit

f(β, h) := lim
”Λ→∞”

1

N
F (β, h,Λ)

of the free energy per spin, a phase transition can

manifest as a singularity.

Thermodynamic quantities (per spin)

• Energy u = 〈H〉
N = − 1

N
∂ logZ
∂β = ∂

∂β (βf)

• Heat capacity (at fixed h) ch = ∂u
∂T =

−kβ2 ∂2

∂β2 (βf) = kβ2

N

(〈
H2
〉
− 〈H〉2

)
≥ 0

• Magnetization m = 〈si〉 = 1
N

∑
i 〈si〉 (transla-

tion invariance) = 1
βN

∂
∂h logZ = −∂f

∂h

• Susceptibility χ = ∂m
∂h = −∂2f

∂h2 =
β
N

(〈
(
∑

i si)
2
〉
− 〈
∑

i si〉
2
)

(≥ 0) =
β
N

∑
ik 〈sisk〉− 〈si〉 〈sk〉 = β

∑
k 〈sisk〉− 〈si〉 〈sk〉

(i fixed, translation invariance)

Lattice gas has one or zero particle(s) per site i:

ni ∈ {0, 1} for i ∈ Λ (particle per site)

n = (n1, n2, . . . , nN ) (configuration)

H̃(n) =
1

2

∑
ik

Wiknink (energy)

Lattice gas ←→ Ising model Use substitution

si = 2ni − 1.

Then

H̃(n)− µ
∑
i

ni = H(s)− C|Λ|

with Jik = −Wik
4 , h = µ

2 −
W0
4 , W0 =

∑
kWik (i-

independent, translation invariance) and C = µ
2−

W0
8 .

This relates grand canonical partition function of lat-

tice gas to canonical one of the Ising model. Thereby

−Ω(β,Λ, µ) = −F (β,Λ, h) + C|Λ|,
p(β, µ) = −f(β, h) + C,

n(β, µ) ≡ 1

|Λ|

〈∑
i

ni

〉
=

1

2
(m(β, h) + 1).

4.2 The mean-field approximation

Assume ferromagnetic coupling Jik > 0.

Mean-field approximation Replace

sisk −→ sim(s), m(s) :=
1

N

N∑
k=1

sk, or

Jik −→ J, J :=
1

N

∑
k

Jik.

Then

H −→ H̃, H̃(s) = −N
2
Jm(s)2 −Nhm(s)

with m ∈ {−1,−1+ 2
N ,−1+ 4

N , . . . , 1−
2
N , 1} ≡MN .

The function f (−1 ≤ m ≤ +1)

βf(m) := βf(m,β, h) = −β
(
J

2
m2 + hm

)
+

1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

βf ′(m) = −β(Jm+ h) + arctanhm

βf ′′(m) = −βJ +
1

1−m2

See graph of f(m) for h = 0 below.

Remark (concavity/convexity of f) Note: first

term in f is concave, last two are convex (x log x).

Partition function With f as above we obtain

Z̃ =
∑

m∈MN

e−Nβf(m)+o(N) ≈ e−Nβf(m0)+o(N).
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Derivation

• #spins ±1 for given m: N± = 1±m
2 N (use

N+ + N− = N , N+ −N− = Nm). Thus #con-

figurations:
(
N
N+

)
= N !

( 1+m
2
N)!( 1−m

2
N)!

.

• Z̃ =
∑

m∈MN

N !
( 1+m

2
N)!( 1−m

2
N)!

eβN( 1
2
Jm2+Hm).

Use Stirling log n! = n(log n− 1) + o(n).

Thermodynamic limit = N → ∞, V → ∞, N
V =

const. There, macroscopic thermodynamics is valid.

Free energy per spin in equilibrium the minimum

free energy f . In the thermodynamic limit it is

f̃(m0) = lim
N→∞

− 1

βN
log Z̃,

where m0 ∈ (−1, 1) denotes a minimum of f(m).

This minimum m0 fulfills the transcendental eq

m0 = tanh(β(Jm0 + h)) ⇐⇒
x− βh
βJ

= tanhx, with x = β(Jm0 + h).

with x = β(Jm+ h).

Derivation

• Let m0 be an absolute minimum of f(m). Then

min
m∈MN

f(m) = f(m0) + o(1) for N →∞ (despite

MN discrete) because of continuity of f .

• Rewrite
(
N
N+

)
= N !

( 1
2

(1+m)N)!( 1
2

(1−m)N)!
.

• With eo(N) ≤
∑
≤ Neo(N) = eo(N) & sandwich

lemma follows Z̃ = e−Nβf(m0)+o(N) (N →∞).

• Minima located in open interval (−1,+1) be-

cause f ′(±1) = ±∞ at m = ±1. Thus f ′(m) = 0

at minimum. Solve.

• Alternative (usual) intuition: self-consistency

condition requires m = ∂ logZ1

∂h = tanhβh′ =

tanh[β(h + Jm)], where h′ denotes the effective

mean-field.

Magnetization The minimum m0 fulfills the self-

consistency condition for βJ < 1 or h 6= 0

m = −∂f
∂h

= +m0(β, h)

and results in the following isotherms (m0 as a func-

tion of h for given β)

Derivationm0(β, h) differentiable for βJ < 1 or h 6=
0, and − ∂

∂hf(m0(β, h), β, h) = −f ′(m0, β, h)∂m0
∂h −

∂f
∂h(m0, β, h) with f ′(m0, β, h) = 0 (minimum). De-

fine critical temperature βcJ = J
kTc

= 1. Then

i) for βJ ≤ 1 (T ≥ Tc) there is 1 solution m0(β, h),

ii) for βJ > 1 we have 1 solution if h large, 3 solu-

tions if h small. The positive solution is absolute

minimum m0(β, h) (because f(m) − f(−m) =

−2hm, is < 0 for m > 0). Exception: h = 0,

there ±m0(β, h) are both absolute minima.

See plot below for graphical sol: (i) left & ii) right.

Spontaneous magnetization means net magneti-

zation |m| > 0 without external field. It occurs for

T < Tc (β > βc): m0 > 0 remains for h↘ 0. In fact,

m(T, 0) ≈


√

3(1− T
Tc

) ∝ (Tc − T )β, (T ↗ Tc)

1− 2e−2T/Tc , (T ↘ 0)

with β = 1/2 (critical exponent).

Derivation

• Expand tanhx ≈

{
x− 1

3x
3, (x→ 0)

1− 2e−2x, (x→∞)

• From before: tanhx = x
βJ (h = 0), solve for x.

Phase diagrams are shown below.
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Susceptibility

χ = f ′′(m0)−1 =
1

β−1(1−m2
0)−1 − J

Derivation

• Take d
dh of ∂f

∂m(m0(β, h), β, h) = 0.

• Enter ∂m0
∂h =: χ & ∂2f

∂h∂m = −1 and then f ′′(m)

(all from definition of f).

Curie-Weiss law For h = 0 the susceptibility is

χ(T, h = 0)

= 1
k(T−Tc) T > Tc

≈ 1
2

1
k(Tc−T ) T ↑ Tc

∼ |T − Tc|−γ (γ = 1)

Derivation

• T > Tc ⇒ m0 → 0⇒ χ ≈ 1
β−1−J

• Expand β−1(1−m2
0)−1−J ∼ β−1(1+m2

0 +. . .)−
J = β−1 − J + β−1

c 3(1− T
Tc

) = 2k(Tc − T ).

Entropy s = kβ2 ∂f
∂β is in agreement with 3rd law:

Energy

u =
∂

∂β
(βf) = −J

2
m2

0 − hm0

u(T, h = 0) = −J
2
m2

0 ≈

{
0 T > Tc
3
2k(T − Tc) T ↑ Tc

Heat capacity

ch(T, h) =
∂u

∂T

∣∣∣∣
h

= −(Jm0 + h)
∂m0

∂T

∣∣∣∣
h

ch(T, h = 0) ≈ 3

2
k ∼ |T − Tc|−α (T ↑ Tc)

with critical exponent α = 0. See also the plot below.

Remarks

i) (Lattice dimension) d is irrelevant for MFT,

but not for Ising model. There:

• d = 1: no phase transition for T > 0 (T =

0: spontaneous magnetization),
• d ≥ 2: phase diagrams as in MFT: phase

transition curve (T < Tc, h = 0) with spon-

tan. magnetization, ends in critical point.

Ising critical exponents match MFT for d ≥ 4:

α β γ

d = 2 0 1/8 7/4

d = 3 0.109 ' 0.327 ' 1.237

d ≥ 4 0 0.5 1

ii) (Phase coexistence in lattice gas) The two

phases of opposite m match liquid & gas phase

interpretation of model as lattice gas.

4.3 Peierls argument

Setting Ising model. Take nearest neighbors & J >

0 (ferromagnet) as example. Let h = 0.

Question At T = 0 either si = +1, ∀i ∈ Λ, or −1.

Is there spontaneous magnetization for small T > 0?

Yes if typical configs of the canonical ensemble are

still mostly “+” or “−”, but not when large “islands”

of opposite spins become very probable.

Qualitative Argument

Qualitative answer

• Case d = 1: No spontaneous magnetization.

• Case d = 2: Spontaneous magnetization for

T > 0 small enough.

Qualitative reasoning through discussion of island

probability vs. prob. of ∀i ∈ Λ : si = +1 (= p0).

Note: energy difference between 2 aligned vs. oppo-

site spins is J − (−J) = 2J for k = 2 nn interaction.

• Case d = 1: + + + + | − − −︸ ︷︷ ︸
L

|+ + + +

– Probability of one particular island: p =

p0e
−β∆E with ∆E = 2J · 2.

– Prob. of arbitrary island of length L: # · p
(with # = no. of configs = N − L + 1).

Then # · p = p0e
−β(∆E−T∆S) ≡ p0e

−β∆F .
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– # & N/2 for L . N/2, thus ∆S ∼ logN

and ∆E ∼ const., thus −β∆F � 1 for ar-

bitrarily small T > 0.
– Hence p0 � # · p, no spontan. magn.

• Case d = 2:

+ + + + + + + + + + + ++

+ + + +−−−−+ + + ++

+ + + + +−−+ + + + ++

+ + + + + + + + + + + ++

– ∆E = 2J · L (L: boundary length), I’d

rather say it is ∆E ≥ 2J · L.
– # . N ·3L (∼ “drawing” the boundary step

by step) and L2 & N/2 for large islands.

Hence k−1∆S = log # . L log 3 + o(L).
– Thus −β∆F = k−1∆S − β∆E . L(log 3−

2βJ)� −1 for large β i.e. small T .
– Then: p0 � # · p, spontan. magn.
– Note: Both ∆E and T∆S are of same order

in L, thus T settles the competition.

Rigorous Argument

Theorem (Griffith) For spin +1 boundary condi-

tions, β > 0 large enough, and h = 0, we have

lim inf
Λ→∞

〈m(s)〉Λ+ =: m+(β) > 0 (where m(s) =

1
|Λ|
∑

x∈Λ sx, mean spin).

In words: At low T , the boundary condition at the

surface leads to a volume effect (magnetization).

Proof

• Configurations s are given by graphs Γ that sep-

arate the islands.

• Graphs do not touch boundary because of “+”-

rim, thus energy of s is HΓ+(s) = 2J |Γ|−J ·Np.

• Graph decays in cycles γ with occurrence prob-

ability P (γ) =
∑

Γ⊃γ e
−2βJ|Γ|∑

Γ′ e
−2βJ|Γ′| .

• Denominator
∑
Γ′
e−2βJ |Γ′| ≥

∑
Γ′=Γ\γ

Γ⊃γ

e−2βJ(|Γ|−|γ|).

Therefore, P (γ) ≤ e−2βJ |γ|.

• P (sx = −1) ≤
∑

γ⊃x P (γ) because −1 has to be

in interior of a cycle, but not the converse.

• Consider cycles of 2n horizontal & 2m vertical

lattice edges and fixed x. Then surface area of

one γ bounded by m · n, thus x ∈ Γ can be

in interior of at most m · n translations of the

cycle. There are at most 3(2m+2n) cycles that

pass through a given point (consider 3 directions

to “step” boundary). Hence, P (sx = −1) ≤
∞∑

m,n=0
mn · 3(2m+2n)e−2βJ(2m+2n).

• Thus, P (sx = −1) ≤
( ∞∑
n=0

n · e2n(log 3−2βJ)

)2

=:

f(β)→ 0 for β →∞.

• 〈sx〉Λ+ = P (sx = +1) − P (sx = −1) = 1 −
2P (sx = −1).

• Together the last two points give: 〈m(s)〉Λ+ =
1
|Λ|
∑
x∈Λ

〈sx〉Λ+ ≥ 1− 2f(β) > 0.

Lemma (consequences for free energy)

i) f(β, h) = f+(β, h), i.e. free energy independent

of boundary condition in thermodynamic limit.

ii) − ∂f+

∂h

∣∣∣
0+
≥ m+(β) (one-sided derivative), and

hence + ∂f
∂h

∣∣∣
0−

= − ∂f
∂h

∣∣∣
0+

> 0 for β > 0 large

enough (from theorem).

Proof Not done in lecture.

Remarks

i) (Generalizations) to d ≥ 2, longer range inter-

actions (e.g. next to nearest neighbors), higher

spins. But not d = 1.

ii) (Spontaneous symmetry breaking) happens

for Ising model: as h→ 0 it gains discrete spin-

flip symmetry sx 7→ −sx (all x ∈ Λ), in that

H(s) = H(−s) at h = 0.

If spin continuous (~sx ∈ Sn−1, unit sphere &

n ≥ 2), then continuous symmetry ~sx 7→ R~sx
(x ∈ Λ, R ∈ SO(n)). In d = 2, this continuous

symmetry does not break spontaneously (theo-

rem of Mermin-Wagner), but it does for d ≥ 3.

4.4 The exact solution in d = 2

Setup 2M configurations s = (µ0, . . . , µN1) with µ =

(s0, . . . , sM−1). Hamiltonian

H(s) =
N−1∑
i=0

[E(µi) +W (µi, µi−1)]
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with E(µ) = −J2
∑M−1

m=0 smsm+1, W (µ, µ′) =

−J1
∑M−1

m=0 sms
′
m.

Partition fu Z = ZNM (J1, J2) & transfer matrix

Z =
∑

µ0,...,µN−1

N−1∏
i=0

e−W (µi,µi+1)−E(µ1)+E(µi+1)

2 = trTN

〈µ|T |µ′〉 = exp

(
−W (µ, µ′)− E(µ1) + E(µi+1)

2

)

Factorization of T = V
1/2

2 V1V
1/2

2 with

〈µ|V1|µ′〉 = e−W (µ,µ′), 〈µ|V2|µ′〉 = e−E(µ)δµµ′

Largest eigenvalue λmax ∼ partition function in

the thermodynamic limit (M,M →∞)

−βf(J1, J2) = lim
M→∞

λmax

M
.

In the Onsager solution, it is given by

−βf(J1, J2) =
1

2
log(2 sinh 2J1) +

1

2π

∫ π

0
ε(q) dq

where ε(q) is the solution of the equation

cosh εq = cosh 2J∗1 cosh 2J2

− cos q · sinh 2J∗1 sinh 2J2 =: χ(q).

Derivation It holds λNmax ≤ ZMN ≤ 2NλNmax,
log λmax

M ≤ logZMN
MN ≤ log λmax

M + 2
M

Phase transitions occur for the condition

J∗1 = J2, q = 0 or sinh 2J1 · sinh 2J2 = 1 with

Jcritical =
1

2
sinh−1(1) ≈ 0.44.06

Near the critical point J ≈ Jc and q ≈ 0 the following

approximations hold χ(q) ≈ 1 + 8(J − Jc)2 + q2

2 and

ε(q) ≈ [16(J − Jc)2 + q2]1/2.

Derivation

• cosh 2(J∗1 − J2) ≤ χ(q) ≤ cosh 2(J∗1 + J2) for

q ∈ (0, π), thus χ(q) ≥ 1 and χ(1) ⇐⇒ q =

0 ∧ J∗1 = J2, thus sinh 2J1 · sinh 2J2 = 1.

• [1,∞) 3 χ 7→ ε = cosh−1(χ) = log[χ +
√
χ− 1]

only singularity at χ = 1, hence ε analytic in

J1, J2, only ε(q = 0;J1, J2) singularity for J∗1 =

J2, hence critical point.

• 0 = d
dJ |J=J∗ sinh 2J∗ · sinh 2J =⇒ dJ∗

dJ = −1

• for J ≈ Jc, q ≈ 0: J∗ − J ≈ −2(J − Jc)
• use coshx(cosx) ≈ 1 ± x2

2 , sinhx ≈ x to obtain

approximations of χ(q), ε(q).

Logarithmic divergence manifests in the free en-

ergy and the heat capacity, which along the magne-

tization read

−βf(J) = − 4

π
(J − Jc)2 log |J − Jc|

ch
k

= − 8

π
log |J − Jc|

m(J) =

{
±[1− (sinh 2J)−4]1/8 J > Jc

0 J ≤ Jc
with correct critical exponents α = 0, β = 1

8 .

Derivation

• Use approx for ε(q) ≈ |J−Jc|
(

1 + q2

16(J−Jc)2

)1/2

• −βf(J) = 1
2π

∫ π
0 ε(q) dq = 4

π |J−Jc|
2
∫ π

0 ·2
∫ π

0 (1+

t2)1/2 dt = 4
π (J − Jc)

2[log(s +
√
s2 + 1) +

s
√
s2 + 1] → − 4

π (J − Jc)
2 log |J − Jc| as s =

π
4|J−Jc| →∞, use t = q

4(J−Jc)

• ch
k = β2 ∂2

∂β2 (βf) = − 8
π log |J − Jc|

• m(J): without proof

V1, V2 in terms of σz, σx

V1 = (2 sinh 2J1)M/2eJ
∗
1

∑M−1
m=0 σ

x
m ≥ 0

V2 = eJ2
∑M−1
m=0 σ

z
mσ

z
m+1

Derivation TODO

V1, V2 fermion representation in terms of cm

V1 = (2 sinh 2J1)M/2e−2J∗1
∑M−1
m=0 (c∗mcm− 1

2
)

V2 = e−J2
∑M−1
m=0 (c∗m−cm)(c∗m+1+cm+1)

and V1, V2 commute with the parity of N , (−1)N and

thereby with T . This allows to solve the eigenvalue

problem separately for subspaces with even (odd) N

Derivation TODO

T factorization using Fourier transformation

by transforming cm → cq, T factorizes with commut-

ing factors T (q) as

T = (2 sinh 2J1)M/2T (0)T (π)
∏

0<q<π

T (q)

T (q) = V2(q)1/2V1(q)V2(q)1/2

with factors for q = 0, π

V1(q) = e−2J∗1 (c∗qcq− 1
2

)

V2(q) = e2J2 cos q(c∗qcq− 1
2

)

T (q) = e−2J∗1 (c∗qcq− 1
2

)

(for q = 0, π)

and for 0 < q < π

V1(q) = e−2J∗1 s
z
q

V2(q) = e2J2(szq cos q+sxq sin q)
(for 0 < q < π)
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with pseudo spin operators

szq = c∗qcq + c∗−qc−q − 1, sxq = cqc−q + c∗−qc
∗
q ,

syq = i(cqc−q − c∗−qc∗q), sxqs
y
q = −syqsxq = iszq (cyclic)

that are a representation of the angular momentum

algebra (Pauli-matrices) on C2 ⊗C2 (modes q, −q).

Derivation TODO

Largest eigenvalue

−βf(J1, J2) =
1

2
log(2 sinh 2J1) +

1

2π

∫ π

0
ε(q) dq

where ε(q) is the solution of the equation

cosh εq = cosh 2J∗1 cosh 2J2

− cos q · sinh 2J∗1 sinh 2J2.

5 The Renormalization Group

5.1 Scaling hypothesis

Critical exponents characterize singularities of var-

ious observables at second order phase transitions.

Example: critical exponents of spin systems

(e.g. Ising model) with critical point J = Jc (or

T = Tc or β = βc), h = 0 are called:

• Heat capacity

c(J) ∼ |J − Jc|−α (J → Jc)

• Spontaneous magnetization

m(J, h = 0) ∼ |J − Jc|β (J ↓ Jc)
• Susceptibility

χ(J) ∼ |J − Jc|−γ (J → Jc)

• Magnetization

m(J = Jc, h) ∼ h1/δ (h ↓ 0)

• Correlations (at critical point)

〈s0sx〉 |J=Jc,h=0 ∼ |x|−(d−2+η) (|x| → ∞)

η is called the anomalous dimension.

• Correlation length (h = 0 but away from crit pt)

〈s0sx〉 |h=0 ∼ e−|x|/ξ(J) (|x| → ∞, J 6= Jc)

ξ(J) ∼ |J − Jc|−ν (J → Jc)

Logarithmic deviations possible. Exponents:

Universality of critical exponents means they

i) depend on dimension d of lattice and symmetry

of model (more precisely: of ordered phase), e.g.

Z2 = {±1} (spin flip) for Ising model SO(n) for

n-vector model.

Ising Heisenberg

d = 2 d = 3 d = 4 d = 3

α 0 0.12 0 −0.14

β 1/8 0.31 1/2 0.3

γ 7/4 1.25 1 1.4

δ 15 5 3 4.80

η 1/4 0.05 0 0.04

ν 1 0.64 1/2 0.7

ii) are independent of type of lattice (quadratic, tri-

angular, etc.) and of spin-couplings (provided

they are short-range); and (at T > 0) of whether

model is classic or quantum.

Remark (direction of limit) Critical exponents

are equal on both sides of the critical point (if de-

fined), e.g. c(T ) ≈ A±|T − Tc|−α± (T ↓↑ Tc) with

α+ = α− ≡ α, but A+ 6= A− possible. In case

of logarithmic deviations c(T ) = |T − Tc|−α(A± +

B± log |T − Tc|), however B+ = B− ≡ B.

Scaling laws relate critical exponents:

α+ 2β + γ = 2, (Rushbrooke)

β(δ − 1) = γ, (Widom)

ν(2− η) = γ, (Fisher)

2− α = νd. (Josephson)

Change of variables: t = T − Tc, h = H −Hc.

Scaling hypothesis Pressure p(t, h) (= −f) has a

decomposition

p(t, h) = pr(t, h) + ps(t, h),

where pr regular at t = h = 0 & ps singular with

ps(t, h) = xp(xst, xrh) (∀x, some s, r).

Implies:

i) ps(0, 0) = 0 (not∞ because potentials bounded)

ii) s, r < 0 (otherwise ps(t, h) = 0 by x→ 0)

Resulting critical exponents

α =
2s+ 1

s
, β = −r + 1

s
, γ =

2r + 1

s
, δ = − r

r + 1
This confirms Rushbrooke, Widom (scaling laws) and

independence of exponents on direction of limit.
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Derivation From derivatives (up to regular terms):

m(t, h) =
∂p

∂h
= xr+1m(xst, xrh),

χ(t, h) =
∂2p

∂h2
= x2r+1χ(xst, xrh),

c(t, h) =
∂2p

∂t2
= x2s+1c(xst, xrh).

Set h = 0, x = |t|−1/s to obtain

m(t, 0) = |t|−
r+1
s m(sgn t = ±1, 0),

χ(t, 0) = |t|−
2r+1
s χ(sgn t = ±1, 0),

c(t, 0) = |t|−
2s+1
s c(sgn t = ±1, 0),

and t = 0, x = |h|−1/r for

m(0, h) = |h|−
r+1
r m(0, sgnh = ±1).

5.2 Renormalization: block spin transfor-

mation

Goal Explanation of scaling hypothesis.

Block spin transformation idea Group sites i into

blocks i′ (size ld). Decimated lattice with spins s′i′ .

Possible transformation rules

i) majority rule (Kadanoff): s′i′ = ±1 if
∑
i∈i′

si ≷ 0.

ii) linear transformation: s′i′ = c
∑

i∈i′ si (c > 0).

c to be chosen s.t. {s′i′} and {si} obey roughly

same probability distribution. Extreme exam-

ples: all si (i ∈ i′) equal: c = l−d, all si (i ∈ i′)
independent: c = l−d/2 (by standard deviation

for independent spins
√
ld · 1, which normalizes

70 % of outcomes well).

RG transformation Step by step computation of

partition function, settling with coarser collection of

degrees of freedom (e.g. spin model to block spin

model).

First idea Illustrated on Ising model as an example.

• Find renormalization transformation R :

(J, h) → (J ′, h′) s.t. e−H
′(s′) =

∑
s→s′

e−H(s) (β

in couplings) with H(s) = −J
∑
〈i,j〉

sisj − h
∑
i
si

and H ′(s′) = −J ′
∑
〈i′,j′〉

s′i′s
′
j′ − h′

∑
i′
s′i′ .

• Then Z(J ′, h′) = Z(J, h). Thermodynamics at

(J, h) follow from at (J ′, h′) if RG trafo is known.

• Iterate. Rn = Rn−1 ◦ R, (n = 1, 2, ...), R0 = id

form semi-group (lack inverse).

Failure of that idea e−H
′(s′) =

∑
s→s′

e−H(s) actu-

ally leads to additional couplings (more than nearest

neighbors, order k) and constants (k = 0) in H ′.

Vector space of functions f : {±1}Λ→ R
• sX :=

∏
i∈X

si (= 1 if X = ∅), form orthon. basis

• 2|Λ| such subsets X ⊂ Λ, i.e. dimV = 2|Λ|

• (f, g) := 2−|Λ|
∑

s f(s)g(s) defines inner product

Derivation Orthonormal by sXsX
′

= sX∆X′ (with

∆ symmetric difference) and
∑

s s
X = 2|Λ|δX,∅.

Improved scheme

• Take H(s) =
∑

X⊂Λ JXs
X with translation-

invariant couplings J = {JX}. Set additive nor-

malization by J∅ = 0.

• JX found by inverting: JX = 2−|Λ|
∑

s s
XH(s).

• H ′(s′) =
∑

X⊂Λ′ J
′
Xs
′X (& thereby J ′X) defined

by e−H
′(s′)−|Λ|pl(J) =

∑
s→s′

e−H(s) with pl(J) cho-

sen as to enforce J ′∅ = 0.

• Implies ZΛ(J ′)e|Λ|pl(J) = ZΛ(J).

• Using |Λ| = |Λ′|ld, find

p(J) = pl(J) + l−dp(J ′) with J ′ = Rl(J).

Can be viewed as functional for function p(J) or as

recursion relation for p(J (n)) (J (n) = Rl(J
(n−1))).

Assumption made At fixed l, Rl : J → J ′ & pl(J)

are regular in J (counterexamples exist).

Remarks

i) (Λ-dependence of Rl) Limit Λ → ∞ should

exist, thus J ′X independent of |Λ′|. Exception

J ′∅: Extensive (seen from trivial case H(s) = 0)

if = 0 not enforced, hence the form |Λ|pl(J).

ii) (Symmetries) should be preserved by RG

trafo. E.g. spin-flip symmetry H(s) = H(−s):
If JX = 0 for #(X) odd, then need same for J ′X .

True if s → s′ ⇐⇒ −s → −s′. Fulfilled by

majority rule & linear transformation.

Assumptions on fixed point of Rl

• It exists, i.e. ∃J∗ : Rl(J
∗) = J∗.
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• The linearization DRl(J
∗) is diagonalizable,

eigenvectors φ(i) & positive eigenvalues lyi .

Motivation for notation lyi : tangent map

DRln(J∗) = (DRl(J
∗))n of Rln = (Rl)

n then

has eigenvalues (lyi)n = (ln)yi of same form.

Terminology: lyi with scaling dimension

• yi > 0 (expansion) is a relevant eigenvalue
• yi = 0 (neutral) is a marginal eigenvalue
• yi < 0 (contraction) is an irrelevant eigenvalue

Basis transformation to scaling fields {φ(i)}:

J − J∗ =
∑
i

uiφ
(i).

Rl acts in linear approximation as ui → lyiui.

Example y1 > 0 (relevant), y2 < 0 (irrelevant).

Work in this example now.

p near fixed point found to be

p(u1, u2) ≈ |u1|d/y1p(±1, 0)+
∑

some n

(
−
hn
y1

)
un log |u1|

with “some n = (n1, n2)” given by d−
∑n

i=1 yini = 0.

Derivation (important conceptional parts)

p(u1, u2)− l−dp(ly1u1, l
y2u2) = pl(u1, u2) (?)

is the linear inhomogeneous equation for p to solve:

i) General solution of homogeneous equation.

• p(0, u2) = 0 by letting l→∞ (& y2 < 0).
• Take |u1| � 1, l = |u1|−1/y1 . Then

p(u1, u2) = |u1|d/y1p(±1, |u1|y2/y1u2).
• Taylor in u2 around 0 (|u1|y2/y1 � 1 from

−y2/y1 > 0): p(u1, u2) = |u1|d/y1p(±1, 0) +

|u1|(d−y2)/y1u2p,2(±1, 0) + ....
• First part most singular for small u1, u2.

Note: no expansion in u2 needed in (i), and thus

no singularity in u2 necessary, only in u1.

ii) A particular solution of inhomogeneous equ.

• Take d
dl (?)|l=1, define h(u) = ∂

∂lpl(u)|l=1.

Then: 0 = h(u1, u2) − d · p(u1, u2) +∑2
i=1 yiuip,i(u1, u2).

• h(u) regular: h(u1, u2) =
∑

n>0 hnu
n with

n = (n1, n2) and un = un1
1 un2

2 .
• Ansatz p(u1, u2) =

∑
n>0 pnu

n.
• Comparing coefficients yields pn =

hn
d−
∑
i yini

.
• If yi rational, denominator can be 0 for

some n. Then pnu
n is solution to hom. eq.

(for that n). Hence change corresponding

term in Ansatz to p̃nu
n log |u1|.

• Comparing coefficients yields p̃n = −hn/y1.

Away from fixed point Model with n parameters

(e.g. Ising n = 2, (J, h)) corresponds to submani-

fold with dimM = n in ∞-dim space of couplings J .

Let n = # relevant eigenvalues, then critical surface

(stable manifold) has codimension n, hence M will

generically intersect it. Intersection corresponds to

second-order phase transition at couplings Jc.

By recursion relation & iterations of RG, singular be-

havior near Jc is same as near fixed point J∗, where

it depends only on relevant variables ⇒ scaling hy-

pothesis (see below).

Explanation of scaling hypothesis

• Homogeneous solution for p (i) scales as

p(1)(u1) = l−dp(1)(ly1u1), hence explains power

law singularity at critical point (with different

amplitudes on each side of fixed point).

• Inhomogeneous solution for p (ii) explains loga-

rithmic corrections including their same ampli-

tudes on both sides of fixed point.

Universality Different models intersect critical sur-

face at different critical points, yet have same critical

behavior (same fixed point); thus universality.

Models of Ising type Assume RG trafo has fixed

point within subspace of spin-flip invariant couplings.

Scaling fields at J∗ are then either even or odd un-

der spin-flip. Just two relevant scaling fields, u1, u2,

corresponding to t, h, with even and odd parity, re-

spectively. Then:

ps(t, h) = l−dps(t
′, h′), t′ = ly1t, h′ = ly2h.
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Comparing to scaling hypothesis with x = l−d gives

s =
−y1

d
, r =

−y2

d
, hence

α = 2− d

y1
, β =

d− y2

y1
, γ =

2y2 − d
y1

, δ =
y2

d− y2
.

Note For each fixed point J∗, spin-flipped couplings

S(J∗) are one too. Assume it is the same.

Example d = 2 From α = 0, β = 1/8 (exact

solution) follows y1 = 1, y2 = 15/8. Therefore

d −
∑2

i=1 yini = 0 for n1 = 2, n2 = 0. Hence p(t, 0)

has singularity t2 log t (indeed in exact solution).

Correlations near critical point

Definition: Γ(x− y; t) := 〈sxsy〉 − 〈sx〉 〈sy〉.
Recall earlier proposition for correlations at h = 0:

Γ(x− yi; t) ≈ e−|x−y|/ξ(t) for t 6= 0

ξ(t) ≈ |t|−ν for t→ 0

Γ(x− yi; t = 0) ≈ |x− y|−(d−2+η)

With RG we can find:

i) Correlation length ξ ∝ t−1/y1 , i.e. ν = 1
y1

(since

the renormalization step ξ(t) 7→ ξ′(t′) = ξ(t)/l,

t 7→ t′ = ly1t motivates ξ(ly1t)
!

= ξ(t)/l)

ii) By introducing site-dependent h: confirm ν = 1
y1

and show η = d + 2 − 2y2. Fisher & Josephson

(remaining scaling laws) follow.

Derivation

• e−
|x|
|t|−ν !

= e
− |x|

y1ν

|t|−ν , hence |x| !
= |x|y1ν ⇒ ν = 1

y1

• Add −
∑

x∈Λ hxsx (site-dependent magnetic

field) in Hamiltonian.

• Using ∂ logZ
∂hx

= 〈sx〉 note Γ(x − y; t) =
∂2 logZ(t,h)
∂hx∂hy

|h=0 = |Λ| ∂2p
∂hx∂hy

|h=0.

• Assume generalization ps(t, hx) = l−dps(t
′, h′x′)

with t′ = ly1t and h′x′ = ly2(l−d
∑

x∈X′ hx).

• With ∂
∂hx

= ly2−d ∂
∂h′

x′
and |Λ|l−d = |Λ′| follows

Γ(x−y; t) = l2(y2−d)Γ(x′−y′; ly1t) (here x′−y′ ≈
(x− y)/l).

• Set y = 0, pick l = |x|, then Γ(x; t) =

|x|−2(d−y2)Γ( x
|x| ; |x|

y1t).

• For t 6= 0, exponential decay can only occur with

correlation length ξ(t) = |t|−1/y1 .

• For t = 0, we read d − 2 + η = 2(d − y2), thus

η = d+ 2− 2y2.

• With coefficients from “models of Ising type”:

ν(2− η) = 1
y1

(2y2−d) = γ and νd = d
y1

= 2−α.

5.3 An explicit RG computation

Setting Ising, d = 2, triangular lattice.
Choice of block-spin trans-

formation: Majority rule.

Restrict to subspace of

even couplings (particu-

larly h = 0). Price: lose

one relevant eigenvalue.

Order of coupling JX defined as lowest power Jn1 at

which interaction sX is generated through R. Turns

out to be as by mediation.

Correlation of non-nn spins i, k via in-

teraction with a third k:
〈
eJ1(sisj+sjsk)

〉
=〈

eJ1(sish)
〉 〈
eJ1(sjsk)

〉
(1 + J2

1 sisk + ...) (series expan-

sion of the exponentials).

Derivation Use 〈sj〉 = 0, i.e. 〈sisj〉 = si 〈sj〉 = 0,〈
(sisj)

2
〉

= 1 and Taylor expansion of exponential.

Truncation of RG map at 2nd order, i.e. H =

−J
∑
〈i,j〉 sisj −J2

∑
〈i,k〉′ sisk−J3

∑
〈i,l〉′′ sisl, where

sums are over 1st, 2nd, 3rd nn.

Decomposition of Hamiltonian H = H0+V with

H0 =
∑

i′ h((si)i∈i′) (Hamiltonian of a single block)

and V all interaction between blocks.

Expectation value after transformation

〈A〉s′ = Z0(s′)−1
∑
s:s→s′

A(s)e−H0(s)

Partition function after transformation

Z0 := Z0(s′) =
∑
s→s′

e−H0(s) =
∏
i′

z(s′i′),

z(s′0′) =
∑

(si)i∈0′→s′0′

e−h(si) = e3J1 + 3e−J1

Derivation For s′0′ = +1 we have e3J1 (+ + +) and

e−J1 (++−,+−+,−++). Same for s′0′ = −1. Thus

z(s′0′) independent of s′0 ⇒ Z0 := Z0(s′).

Expectation value of spins For i, j ∈ 0′ we find

〈si〉s′ = z−1((+1)e3J1 + 2e−J1 + (−1)e−J1)s′0′ = as′0′

〈sisj〉s′ = z−1((+1) + (+1)e−J1 + 2(−1)e−J1) = b

with a := e3J1+e−J1

e3J1+3e−J1
and b := e3J1−e−J1

eJ1+3e−J1
.

Block-spin Hamiltonian H ′(s′) given by

e−(H′(s′)−|Λ|pl(J)) =
∑
s→s′

e−H0(s)−V (s) = Z0(s′)
〈
e−V

〉
s′
,

hence

H ′(s′) = |Λ|pl(J)− logZ0 − log
〈
e−V

〉
s′
.
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Cumulant expansion of − log
〈
e−V

〉
:

− log
〈
e−V

〉
= −〈V 〉+

1

2
(
〈
V 2
〉
− 〈V 〉2) + . . .

Derivation Use Taylor expansions
〈
e−V

〉
= 1 −

〈V 〉+ 1
2

〈
V 2
〉

+ . . . and − log(1−x) = x+x2/2+ . . ..

Mean of V is given by the couplings after RG:

coupling contribution

J ′1 (2J1 + 3J2 + 2J3)a2

J ′2 J3a
2

J ′3 0

Derivation For i, j in blocks i′ 6= j′ we have

〈sisj〉s′ = 〈si〉s′ 〈sj〉s′ = a2s′i′s
′
j′ .

Count contributions illustrated in figure below:

Variance of V , i.e. 1
2(
〈
V 2
〉
s′
− 〈V 〉2S′):

coupling contribution

J ′1 4J2
1 (a2 − a4) + 4J2

1 (a2b− a4)

J ′2 J2
1 (a2 − a4) + 7J2

1 (a2b− a4)

J ′3 4J2
1 (a2b− a4)

Derivation Computation of order 2 in total: keep

only V = −J1
∑

[i,j] sisj with [i, j] nn in different

blocks. Then〈
V 2
〉
s′
− 〈V 〉2s′ = J2

1

∑
[i,j],[k,l]

〈sisjsksl〉 − 〈sisj〉 〈sksl〉

≡ J2
1

∑
[i,j],[k,l]

〈sisj , sksl〉s′

(omit 1/2 by counting pairs only once). Calculate

several cases

〈sisj , sksl〉s′ =


0 i′, j′, k′, l′ pairwise disjoint

(a2 − a4)s′i′s
′
l′ i′ 6= l′ and j = k

(a2b− a4)s′i′s
′
l′ i′ 6= l′, j′ = k′ but j 6= k

const else.

Alternatively calculate diagramatically. Then count

as before, see figure below.

Result: RG transformation Putting all the above

together gives

J ′1 = 2J1a
2 + 4J2

1 (a2 + a2b− 2a4) + 3J2a
2 + 2J3a

2

J ′2 = J2
1 (7a2b+ a2 − 8a4) + J3a

2

J ′3 = 4J2
1 (a2b− a4)

Fixed points of map Trivial one J = 0 (high tem-

perature) and one at (Newtons’s method)

J∗1 = 0.27887 J∗2 = −0.01425 J∗3 = −0.01523

Eigenvalues at fixed point λ1 = 1.7728 (relevant)

& λ2,3 (irrelevant). Rewrite λ1 = ly1 with l =
√

3

(s.t. decimation factor l2 = 3) and y1 = 1.042 (1 in

exact computation).

Derivation Calculate linearization at fixed point.

M =

1.8313 1.3446 0.8964

0.0052 0 0.4482

0.0781 0 0


Critical point Jc can be found from this as Jc =

0.2574 (exact result: 0.27465).

Derivation Write ui = ψ(i) · (J −J∗) with ψ(i) dual

basis to eigenvectors. Critical surface given by ui =

0. Critical coupling of Ising fulfills J1 = Jc, J2 =

J3 = 0. Thus ψ(i) · Jc = ψ(i) · J∗. Enter ψ(i).
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6 Second Quantization

Single particle definitions states φ from single

particle Hilbert spaceH with ONB {φ1, . . . , φn}. Ob-

servable b : H → H. For states as wavefunctions

ψ(x) = 〈x|ψ〉

From one to many particles n identical particles

H −→H(n) =
⊗
n

H (Hilbert space)

|ψ〉 ∈ H −→|ψn〉 ∈ H(n) (States)

b : H → C −→B : H(n) → C(n) (Observables)

B =
n∑
k=1

bk

B =
n∑
i<k

bik

|ψ〉 !
= eiφ |ψ〉 −→Pσ |ψn〉

!
= χ(σ) |ψn〉

(Admissibility)

with bk = 1 ⊗ . . . ⊗ 1 ⊗ a︸︷︷︸
k-th position

⊗1 ⊗ . . . ⊗ 1 and

H(0) = C. Symmetric group Sn acts on H(n) by Pσ :

ψ1 ⊗ . . .⊗ ψn 7→ ψσ−1(1) ⊗ . . .⊗ ψσ−1(n).

Identical particles Labeling is arbitrary, no ob-

servable must be able to tell particles apart

〈Pσψn|B|Pσψn〉 = 〈ψn|B|ψn〉 for σ ∈ Sn, which is

equivalent to [Pσ, B] = 0.

Symmetric/antisymmetric states From the ad-

missibility requirement, it follows that χ(στ) =

χ(σ)χ(τ) and hence χ(σ) = 1 or χ(σ) = sgn(σ).

This decomposes the Hilbert space into symmetric

and antisymmetric subspaces:

H(n)
s = {|ψn〉 | Pσ |ψn〉 = |ψn〉} (Bosons)

H(n)
a = {|ψn〉 | Pσ |ψn〉 = sgn(σ) |ψn〉} (Fermions)

Bosons take integer spins, fermions half-integer val-

ues. Single permutation criterion: P(i,i+1) |ψ〉 =

± |ψ〉 =⇒ |ψ〉 ∈ H(n)
s/a for i = 1, . . . , n− 1.

Creation and annihilation operators Define op-

erators a(φ) : H(n) → H(n−1), a†(φ) : H(n−1) → H(n)

for n ≥ 1 by

a†(φ)ψn(x1, . . . , xn) :=

1√
n

n∑
k=1

(±1)k−1φ(xk)Ψ(x1, . . . , x̂k, . . . , xn)

a(φ)ψn−1(x2, . . . , xn) =
√
n

∫
dx1φ(x1)Ψ(x1, . . . , xn)

where ψn ∈ H(n) and the hat ˆ denotes omission of

the argument. a†(φ) (a(φ)) is (anti-)linear in φ. The

annihilation operator a(φ) follows from the creation

operator.

Commutation relations

[a(φ), a(φ′)]± = 0, [a†(φ), a†(φ′)]± = 0,

[a(φ), a†(φ′)]± = 〈φ|φ′〉

Occupation number basis For ONB {φ1, . . . , φk}
define ak := a(φk), then relations become

[ai, ak]± = 0, [a†i , a
†
k]± = 0, [ai, a

†
k] = δik.

Vacuum ak |0〉 = 0 for k = 1, 2, . . .. Change of basis

|φ̃i〉 =
∑

j 〈φj |φ̃i〉 |φj〉. N -particle states are

|n1, n2, . . .〉 = (n1!n2! . . .)−1/2(a†1)n1(a†2)n2 . . . |0〉
with

∑∞
i=1 ni = N . The action of the annihila-

tion/creation operators for bosons are

a†k |n1, . . .〉 =
√
nk + 1 |n1, . . . , nk + 1, . . .〉

ak |n1, . . .〉 =
√
nk |n1, . . . , nk − 1, . . .〉

and for fermions

a†k |n1, . . .〉 = (−1)Sk(1− nk) |n1, . . . , nk + 1, . . .〉
ak |n1, . . .〉 = (−1)Sknk |n1, . . . , nk − 1, . . .〉

with Sk = n1 + . . .+ nk−1.

Fock space F =
⊕∞

n=0H(n). States Ψ ∈ F are

sequences Ψ = (ψ0, ψ1, ψ2, . . .) with ψn ∈ H(n) and

‖Ψ‖2 = 〈Ψ|Ψ〉 =
∑∞

n=0 〈φn|ψn〉H(n) < +∞.

States through creation operators

Ψ = a†(φ1)a†(φ2) . . . a†(φn) |0〉

ψn(x) =
1√
n!

∑
σ∈Sn

{
1

sgn(σ)

}
φ1(xσ(1)) . . . φn(xσ(n))

Number operatorN : F → F with (NΨ)n = n·ψn.

Then N = N † has eigenspaces H(n) of eigenvalues

n = 0, 1, . . .. Define eigenvector |0〉 = (1, 0, . . .) of

eigenvalue 0 to be the vacuum.

Na(φ) = a(φ)(N − 1) =⇒ [N, a(φ)] = −a(φ)

Na†(φ) = a†(φ)(N + 1) =⇒ [N, a†(φ)] = +a†(φ)

Observables Promote 1-particle operator o on H to

O := dΓ(o) on F by setting Oψn =
∑n

i=1 oiψ
n, where

oi acts on the i-th particle. This is equivalent to the

Fock representation

O = dΓ(o) =
∑
kl

a†k 〈φk|o|φl〉 al.

For 2-particle operators O =
∑

1≤i<j≤n oij and Fock
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representation
1

2

∑
k1,k2,l1,l2

a†k2
a†k1
〈φk1 ⊗ φk2 |o|φl1 ⊗ φl2〉 al1al2 .

Derivation of equivalence. TODO

Number of particles For o = 1 we obtain O =∑
k a
†
kak since 〈φk|1|φl〉 = δkl. It count particles since

Oψn =
∑n

i=1 1 · ψn = nψn.

7 Ideal Quantum Gases

7.1 Formalism

States on Hilbert space H
• Mixed state: density matrix on H, i.e. operator

P : H → H with P = p∗ ≥ 0, trP = 1.

• Pure state: ψ ∈ H, ‖ψ‖ = 1, i.e. P = |ψ〉〈ψ|.

Convex combinations of density matrices If

P1, P2 are density matrices, then so is P = p1P1 +

p2P2 where p1 + p2 = 1, pi ≥ 0 (probability of state

being drawn from Pi).

Spectral decomposition P =
∑

k pkPk with Pk =

|φk〉〈φk| and pk & φk eigenvalues & -vectors of P .

They fulfill pk = p̄k ≥ 0,
∑

k pk = 1, 〈φk|φl〉 = δkl.

Hence interpretation of P : Statistical mixture of pure

states |φk〉 with probabilities pk.

Expectation value of observable: 〈A〉 = tr(AP ).

Compatible with 〈A〉ψ = 〈ψ|A|ψ〉 for pure state.

Entropy S(P ) = −k tr(P logP ). No additive ambi-

guity. Similar properties as classically.

Systems under consideration N identical parti-

cles in a fixed box Λ with Hamiltonian HN acting on

Hilbert space HN .

Microcanonical ensemble Besides N , E fixed

within small tolerance ∆ > 0. then ensemble:

P = Σ∆(E)−1P∆(E), Σ∆(E) = trP∆(E)

with P∆(E) projection onto eigenvectors of HN with

eigenvalues within [E−∆, E], Σ∆(E) their number.

Entropy from microcanonical ensemble

S(P ) = k log Σ∆(E)

From S(P ) = −k(x log x)trP∆(E) for x = Σ∆(E)−1.

Canonical ensemble T fixed instead of E.

P = Z(β)−1e−βHN , Z(β) = tre−βHN .

Fock space

F =
∞⊕
N=0

HN ; H =
∞⊕
N=0

HN .

Grand canonical ensemble µ fixed instead of N .

Classically: sum over {ΓN}N≥0. Now: Fock space.

P = Ξ(β, µ)−1e−β(H−µN), Ξ(β, µ) = tre−β(H−µN),

where N is particle operator, commutes with H.

Resulting quantities (replace µ with eβµ)

• Grand canonical potential

Ω(β, µ) = −pV = − 1
β log Ξ(β, µ).

• Expectation value particle number:

N ≡ 〈N〉 = z
(
∂
∂z log Ξ

)
β

= V z
(
∂(βp)
∂z

)
β
.

• Expectation value energy:

U ≡ 〈H〉 = −
(
∂
∂β log Ξ

)
z

= −V
(
∂(βp)
∂β

)
z
.

Derivation By eA+B = eAeB for [A,B] = 0, have

〈N〉 = tr(NP ) = tr(Ne−βHzN )
tr(e−βHzN )

=
z(∂Ξ/∂z)β

Ξ .

7.2 Independent particles

Define η =

{
+1 for bosons,

−1 for fermions.

System Either fermions (F) or bosons (B) with

single-particle energy spectrum ε0 ≤ ε1 ≤ ε2 ≤ . . . ≤
εα ≤ . . ., εα −−−→

α→∞
∞.

Occupation-number basis |n0, n1, n2, . . .〉 of Fock

space where

nα =

{
0, 1 (F )

0, 1, 2, 3, . . . (B)
;

∑
α

nα <∞

N , H are diagonal w.r.t. this basis:

N |n0, n1, n2, . . .〉 =

(∑
α

nα

)
|n0, n1, n2, . . .〉

H|n0, n1, n2, . . .〉 =

(∑
α

εαnα

)
|n0, n1, n2, . . .〉

Grand canonical partition function follows as

Ξ =
∑

n0,n1,...

∏
α

eβ(µ−εα)nα =
∏
α

(1± eβ(µ−εα))±1

with ± ↔ (F )/(B). Need µ < ε0 for (B) so that

geometric series converges. Thus,

log Ξ = ±
∑
α

log(1± eβ(µ−εα)).
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log Ξ = ∓
∑
α

log(1∓ eβ(µ−εα))

〈nα〉 =
1

eβ(εα−µ) ± 1

Universal Fermi/Bose distribution is n(x) =

(ex ± 1)−1. See plot below.

Occupation number expectation value is given

by Fermi/Bose distribution as 〈nα〉 = n( εα−µkT ). For

T → 0: step function for fermions, peaked at 0 for

bosons.

Derivation 〈nα〉 =

∑
{nk}

nαe
β
∑
γ (µ−εγ )nγ∑

{nk}
e
β
∑
γ (µ−εγ )nγ

=

− 1
β

(
∂ log Ξ
∂εα

)
µ,β

= 1
eβ(εα−µ)±1

.

Remark (modes) Underlying idea: particles occu-

pying modes α (single-particle states) independently

(no constraint on N). Ξ =
∏
α Ξα makes sense then.

7.3 Bose-Einstein condensation

Setting Restrict to bosons. Assume ε0 = 0 by shift-

ing µ, hence µ < 0 & 0 < z < 1.

Condensation At T = 0, N -particle state has all

in single-particle groundstate α = 0. Condensation

means that property being stable at T > 0.

Counting states for large V : Extensive asymptotics

#{α|εα ≤ ε} = N(ε)V + o(V ), (V →∞)

with N(ε) integrated density of states. Hence,

#{α|ε ≤ εα ≤ ε+ ∆ε} = ∆N(ε)V + o(V )

Occupation number 〈nα〉 = 1
z−1eβε−1

.

Particle density in thermodynamic limit

ρ(z) = lim
V→∞

〈N〉
V

=

∫ ∞
0

dN(ε)

z−1eβε − 1

Derivation

• Occupation number is bounded uniformly in V ,

α (not in z): 〈nα〉 ≤ 1
z−1−1

.

• Thus 〈N〉 =
∑

α 〈nα〉 = V
∫∞

0
dN(ε)

z−1eβε−1
+ o(V ).

Critical density is maximum achievable ρ ∈ (0, ρ∗).

ρ∗(z) = sup
z
ρ(z) = lim

z↑1
ρ(z) =

∫ ∞
0

dN(ε)

eβε − 1

ρ ≥ ρ∗ can happen in canonical ensemble. Explore

by adjusting z = e−1/ξV with 0 < ξ < ∞ fixed, s.t.

0 < z < 1 but z → 1 as V →∞.

Bose-Einstein condensation With z = e−1/ξV :

〈n0〉 =
1

z−1 − 1
= ξV + o(V ),

i.e. lowest mode α = 0 has macroscopic occupation.

Other states (α 6= 0) 〈nα〉 diverges as V → ∞,

but occupation is macroscopic only if εα grows slower

than V −1, i.e. if εα = O(V −1).

Derivation Consider 〈nα〉 = 1
z−1eβε−1

with εα →
0, z → 1. Denominator vanishes as (ξV )−1 + βεα.

Alternative: take z = 1− ε, then |βµ| = | log z| � 1,

then O(V ) = N −N∗ = N0 = 〈n0〉 = 1
e−βµ−1

≈ 1
−βµ ,

so µ
!

= O(V −1).

Example: ideal gas. Free, spinless particles in

cube 0 ≤ xi ≤ L, periodic boundary cond. Then

• ρ∗ = +∞ for d ≥ 2.

• Bose-Einstein condensation (“in momentum

space”) occurs for d > 2, i.e. only the mode
~k = 0 is macroscopically occupied. In fact,

n(~k) =
(2π)−d

eβ~2k2/2m − 1︸ ︷︷ ︸
n∗

+ ξδ(d)(~k)︸ ︷︷ ︸
n0

in the limit L→∞, then z ↑ 1.

Derivation

• Particle in a box: single-particle states are

ψ~k(~x) =i~k·~x, quantized momenta ki = 2π
L νi (νi ∈

Z, i1, ..., d), corresponding energies ε~k = ~2k2

2m .

• Count modes in terms of momenta: #{~k|~k ∈
∆dk} =

(
L
2π

)d
∆dk+ o(Ld) (indeed ∝ V = Ld at

leading order).

Qualitatively:

• Critical density ρ∗ = (2π)−d
∫

ddk 1

eβ~2k2/2m−1
.

• Integrand ∼ k−2 as k → 0, i.e. ρ∗ = +∞ for

d ≥ 2 and condensation otherwise.

• For d > 2, spectrum has gap above groundstate

∝ L−2 � L−d, thus only ~k = 0 macroscopically

occupied.
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7.4 Thermodynamics of ideal gas

Setting d = 3, either F/B, particles have spin s (q =

2s + 1 spin orientations), otherwise same model as

in previous example. Thus single-particle states are

|ψ~k〉 ⊗ |m〉 with m = −s,−s+ 1, ...+ s.

Thermal & caloric equation of state
βp = q

λ3 f
−η
5/2(z)

n = q
λ3 f
−η
3/2(z)

u = 3
2pv

with n = 1
v = V

V , u = U
V and thermal wavelength

λ = h√
2πmkT

. For βpv =
f±
5/2

(z)

f±
3/2

(z)
= 1 obtain classical

equations of state u = 3
2kT , pv = kT .

Function f (note that f− bosons, f+ fermions)

f−ηm (z) =
1

(m− 1)!

∫ ∞
0

dx
xm

z−1ex + η

f−η5/2(z) = −η 2√
π

∫ ∞
0

dx
√
x log(1− ηze−x)

z
df±m(z)

dz
= f±m−1(z)

Derivation

• From eq. for log Ξ for independent particles ob-

tain 1
V log Ξ = q

(2π)3
(2π)3

L3

∑
~k
± log(1±ze−β

~2~k2

2m ).

• For L → ∞: Riemann sum.
∑

k →
qV
∫

d3k
(2π)3 . Hence in thermodynamic limit (us-

ing result for grand canonical potential): p
kT =

± q
(2π)3

∫
d3k log(1± ze−β

~2~k2

2m ).

• With substitution x = β ~2~k2

2m , d3k = 4πk dk =

...dx get p
kT = 1

λ3 f
±
5/2(z). Here, “thermal wave-

length” λ = h√
2πmkT

, note analogy to de Broglie

h/p of particle with energy p2/2m = kT .

• Have p
kT = q

λ3 f
±
5/2(z). Use N = V z

(
∂(βp)
∂z

)
β

to

get 1
v = q

λ3 f
±
3/2(z).

• U
V = − ∂

∂β (βp)z = 3
2p (βp ∝ β−3/2 for fixed z).

7.5 Non-degenerate Bose/Fermi gases

(Classical limit)

Degeneracy d = nλ3

q = λ3

vq distinguishes classi-

cal/qm behavior: d � 1 (n � 1, T � 1) is classical.

In this limit T →∞, µ→ −∞.

Power series for f−η5/2(z) with approximation

f−η5/2(z) =
∞∑
l=1

ηl+1 (z)l

l5/2
for |z| < 1 one obtains:{

βpλ3

q = f−η5/2(z) = z − η z2

25/2 + z3

35/2 + . . .
nλ3

q = f−η3/2(z) = z − η z2

23/2 + z3

33/2 + . . .

Hence, d� 1 =⇒ f−η5/2(z)� 1 =⇒ z � 1.

Derivation f±5/2(z) = ± 2√
π

∫∞
0 dx

√
x log(1 −

ze−x). log(1 − ze−x) = −
∑∞

n=1
(ze−x)n

n and
2√
π

∫∞
0 dx

√
xe−xn = n−3/2. Hence f±5/2(z) =

∓
∑∞

n=1
(∓z)n
n n−3/2.

Comparison to classical gas Entering power se-

ries into equation of state gives same form as Ursell-

Mayer expansion. Hence, thermodynamics of non-

interacting quantum particles at small z resembles

interacting classical particles.

Classical limit is z � 1, then l = 1 term suffices and

classical ideal gas emerges. Corresponds to condition

v � λ3 (i.e. mean inter-particle distance ∼ v1/3 large

compared to quantum length scale λ).

Entropy (per particle)

s = k

(
5

2
+ log

(
qv

(
4πmu

3h2

)3/2
))

+O(
λ3

v
)

Note similarity to classical real gas for q = 1.

Derivation s = 1
T (u + pv − µ) = k

(
5
2
pv
kT −

µ
kT

)
=

k
(

5
2 − log z

)
+O(z). Use z = 1

q
λ3

v with λ ≈
√

3h2

4πmu

(from l = 1, i.e. f±5/2(z) ≈ z).

Pressure of Fermi/Bose gas to next order in z

pηv = kT

(
1− η 1

25/2q

λ3

v
+O

((
λ3

v

)2
))

(from pv
kT =

f±
5/2

(z)

f±
3/2

(z)
). Meaning: Fermi gas (η = −1)

has higher pressure than classical gas (Pauli exclusion

principle), and Bose (η = +1) has smaller pressure.

7.6 Degenerate Bose gas

Degeneracy d = nλ3

q =
λ3

vq In the degenerate limit

d � 1 we have as T → 0,

µ approaches 0 from below

(required to ensure 〈nk〉 ≥
0: µ < mink εk = ε0 =

0). There, limz→1 f5/2(z) ≈
1.341 and limz→1 f3/2(z) ≈
2.612.
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Notation of states Label modes ~k 6= 0 with (∗),
~k = 0 with (0). Recall from example on ideal gas,

states are either in mode k = 0 or in modes k > 0:

ρ(T ) = ρ∗(T ) + ρ0 (ρ0 = ξ).

Density of excited states ρ× is bounded by

ρ× =
q

λ3
f−3/2(z) ≤ ρ∗ = lim

z↗1
ρ =

q

λ3
f−3/2(1)

βp =
q

λ3
f−5/2(z) ≤ βp∗ = lim

z↗1
βp =

q

λ3
f−5/2(1)

Critical temperature Tc = h2

2πmk

(
ρ∗

qf−
3/2

(1)

)2/3

• for T > Tc: excited states ρ× make up total

density of states ρ× = ρ

• for T < Tc: z stuck in 1 (µ = 0), limiting density

of excited states is less than the total particle

density ρ× = ρ∗ < ρ. The remaining particles

ξ = ρ−ρ∗ occupy lowest energy state with k = 0.

This is Bose-Einstein condensation.

Range ρ ≥ ρ∗ obtained via Legendre transform.

Constant ρ, µ correspond to constant f , i.e. phase

coexistence.

f(T, ρ) = sup
µ

(µρ− p(T, µ))

df = −sdT + µ dρ

Phase coexistence in the segment 2P.

Fraction of particles in condensate given by

ξ

ρ
=
ρ− ρ∗

ρ
= 1− v

v∗

Energy U =
∑

~k
ε~k
〈
n~k
〉
. 0 for ~k = 0 (from ε0 = 0).

Write U = U∗ + U0 with U0 = 0.

Entropy Write S = S∗ + S0 with S0 = 0 since
S
k =

∑
~k

(
(1 +

〈
n~k
〉
) log(1 +

〈
n~k
〉
)−

〈
n~k
〉

log
〈
n~k
〉)

is O(log V ) for ~k = 0 (as ≈ log
〈
n~k
〉
).

Volume of condensate It is as if V 0 = 0:

Then, (u, s, v) = v
v∗ (u

∗, s∗, v∗) + (1− v
v∗ )(0, 0, 0) with

the per-particle quantities u := U
〈N〉 = U∗

N∗ ·
N∗

〈N〉 =
v
v∗ · u

∗, s = v
v∗ s
∗, v = v

v∗ v.

T-dependence Use Tc ∝ (ρ∗)2/3 = (v∗)−2/3. Line

shows phase coexistance curve.

Phase diagram Crit pressure p∗(T ) ∝ Tλ−3 = T 5/2

Isotherms Use p∗(T ) ∝ T 5/2, Tc ∝ (v∗)−2/3 to ob-

tain transition line p∗ ∝ (v∗)−5/3.

Occupation & heat capacity shows a cusp (2nd

order transition), not a delta function.

Derivation

• For T < Tc (ρ > ρ∗): ρ∗ ∝ T 5/2, hence s =

− ∂f
∂T = dp∗

dT = 5
2
p∗

T ∝ T 3/2 for T < Tc. Heat ca-

pacity from cv = v ·T ds
dT . At T ∗: cv = k 15

4

f−
5/2

(1)

f−
3/2

(1)
.

• For T > Tc: use ideal gas entropy s = 1
T (u+pv−

µ) = k
(

5
2
pv
kT −

µ
kT

)
. Then s ∝ const.− 3

2 log T .
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