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1 Classical Formalism

Boolean algebra

• Boolean algebra: a set of propositions and all

their combinations under the three logical oper-

ations. If non-empty, always contains the tau-

tology 1 and self-contradiction 0.

• propositions/ events: entities we assign proba-

bilities to

• disjoint propositions: events which cannot be

true at the same time

• atoms: set of propositions such that any propo-

sition in the Boolean algebra can be written as

the OR of a set of atoms. Always exists for fi-

nite Boolean algebras. Any Boolean algebra is

equivalent to the powerset of the set of atoms.

• subalgebras: when regarding a proposition as

tautology

• random variable

Boolean probability Pr [A|C], C ∕= 0, fullfills:

• Pr [A|C] ≥ 0 (axiom 1, positivity)

• Pr [A|C] = 1 iff C =⇒ A (axiom 2, norm.)

• Pr [A ∨B|C] = Pr [A|C]+Pr [B|C] for A∧B = 0

(axiom 3, addition rule)

• Pr [A ∧B|C] = Pr [A|B ∧ C] Pr [B|C] (axiom 4,

product rule, consistency of sub-algebras)

• Pr [A ∨B|C] = Pr [A|C] Pr [B|C]−Pr [A ∧B|C]

• Pr [
!

iAi|C] ≤
"

i Pr [Ai|C] (union bound)

• Pr [A] =
"

i Pr [A|Bi] Pr [Bi] for
!

iBi = 1 (law

of total probability)

• Pr [A|B ∧ C] = Pr[B|A∧C]
Pr[B|C] Pr [A|C]

Representational probability

• PX : X → [0, 1], PX(x) := Pr [X = x]

• PXY (x, y) := Pr [X = x ∧ Y = y]

• PX|Y=y : X → [0, 1], PX|Y=y(x) :=
PXY (x,y)
PY (y)

• PX|Y (x, y) = PX|Y (x|y) = PX|Y=y(x)

• PX(x) =
"

y PXY (x, y) =
"

y PX|Y=y(x)PY (y)

• linearity: PY (y) =
"

x∈X 1[f(x) = y]PX(x)

Convexity

• convex set: closed under convex combinations:

s, r ∈ S =⇒ λs+ (1− λ)r ∈ S, λ ∈ [0, 1]

• convex hull: a set’s convex combinations

• extreme points: cannot be written as nontrivial

convex combination of other points

• convex function: f(λx1 + (1− λ)x2) ≤ λf(x1) +

(1− λ)f(x2). Set of points above f is convex.

• Jensen’s inequality: 〈f(X)〉 ≥ f(〈X〉)

Prob(n) := {(p1, . . . , pn) ∈ Rn : pi ≥ 0,
#

pi = 1}

Events(n) := {(e1, . . . , en) ∈ Rn : ei ∈ {0, 1}}
Tests(n) := {(t1, . . . , tn) ∈ Rn : 0 ≤ ti ≤ 1}
States(d) := {σ ∈ L(Cd) : σ ≥ 0,Tr[σ] = 1}

= Hull({|ϕ〉 〈ϕ| : |ϕ〉 ∈ L(Cd)})
Events(d) := {Γ ∈ L(Cd) : 0 ≥ Γ ≤ 1}

POVMs(n, d) := {{Λ(x)}nx=1 : Λ(x) ∈ Effects(d),
#

Λ(x) = 1}

Independence

• A,B independent iff Pr [A ∧B] = Pr [A] Pr [B]

• A,B conditionally independent iff

Pr [A ∧B|C] = Pr [A|C] Pr [B|C]

• pairwise independence not sufficient for indepen-

dence of more than 2 events

• Markov inequality Pr [X ≥ ε] ≤ 1
ε 〈X〉

• Chebychev inequality Pr
$
(Y − y)2 ≥ ε

%
≤ 1

εσ
2

• LLN & CLT for Zn =
"

iXi with Xi iid

lim
n→∞

Pr [|Zn − µ| > ε] = 1 ∀ε (wLLN)

Pr
&
lim
n→∞

Zn = µ
'
= 1 (sLLN)

lim
n→∞

Pr

(√
n
Zn − µ

σ
≤ y

)
= Φ(y) (CLT)

• convergence speed from Chebychev, Hoeffding

bound, Berry-Esseen theorem:

Pr
$
(Zn − µ)2 < ε

%
≤ O(n−1)

Pr [|Zn − µ| ≥ ε] ≤ 2 exp

*
− 2nε2

(b− a)2

+

|Pr [Yn ≤ y]− Φ(y)| ≤ Ct

σ3
√
n
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2 Quantum Formalism

Quantum probability theory

Pr [Λ]ρ = Tr[Λρ]

ρ ∈ L(H), ρ ≥ 0 Tr[ρ] = 1 (density op)

Λ ∈ L(H) λ ≥ 0 Λ ≤ 1 (effect)

• POVM {Λ(x)}nx=1

• Hilbert-Schmidt inner product

• states are complex hull of pure states

• decomposition of density matrix into ensemble

of states is non-unique

• indeterminacy of measurement Λ is partly due

to quantum nature and partly because a state

is a mixture of pure state (ensemble character).

Due to non-uniqueness division cannot be made.

• Gleason’s theorem: P (1) = 1, P (0) = 0, P (Πj +

Πk) = P (Πj) + P (Πk) for ΠjΠk = 0 imply

P (Π) = Tr[Trρ]

Composite systems

• product state |ϕ〉A ⊗ |ψ〉B
• entangled states are non-trivial convex combina-

tions of product states

• maximally entangled states

|Φ〉AB =
1√
d

d−1#

k=0

|bk〉A ⊗ |bk〉B

|Ω〉AB =

d−1#

k=0

|bk〉A ⊗ |bk〉B

• Bell basis in 2D |Φij〉 = (1 ⊗XjZk) |Φ〉AB

|Φ00〉 :=
1√
2
(|00〉+ |11〉)

|Φ01〉 :=
1√
2
(|00〉 − |11〉)

|Φ10〉 :=
1√
2
(|01〉+ |10〉)

|Φ11〉 :=
1√
2
(|01〉 − |10〉)

• Bell basis in dD |Φij〉 = (1 ⊗ U j
BV

k
B) |Φ〉AB

• Weyl-Heisenberg operators (ω = e2πi/d)

U =

d−1#

k=0

|k + 1〉 〈k| , V =

d−1#

k=0

ωk |k〉 〈k|

• partial trace with basis |bk〉 of system B:

TrB[|Ψ〉 〈Ψ|AB] =
"dB

k=1 〈bk| |Ψ〉AB 〈Ψ| |bk〉
• marginal/ reduced state ρA = TrB[ρAB]

• unitary actions & measurements on B does not

affect A (and vice versa)

• cq states ρZA =
"

z PZ(z) 〈bk| |bk〉Z ⊗ ρA(z)

Bloch sphere

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ |1〉

nψ = (sin θ cosϕ, sin θ sinϕ, cos θ)T

ψ = |ψ〉 〈ψ| = 1

2
(1 + n · σ)

|n⊥
ψ 〉 = |−nψ〉

| 〈ϕ|ψ〉 |2 = 1

2
(1 + nϕ · nψ)

Pr [Λn]m = Tr[Λmρm] =
1

2
(1 + n ·m)

λ± =
1

2
(1± |n|)

n|0〉 = (0, 0,+1), θ = 0,ϕ = 0

n|1〉 = (0, 0,−1), θ = π,ϕ = 0

n|+〉 = (+1, 0, 0), θ = π/2,ϕ = 0

n|−〉 = (−1, 0, 0), θ = π/2,ϕ = π

Entanglement has the property that for the com-

posite system AB there exists a measurement for

which the outcome is certain. However, any nontriv-

ial measurement of A/ B alone results in a uniform

outcome distribution. The full system is determinis-

tic, parts of the system are completely uncertain.

Separable vs. entangled A pure state |θ〉AB is

• separable/ a product state iff there exists

|ϕ〉A , |ψ〉B st |θ〉AB = |ϕ〉A ⊗ |ψ〉B
• entangled otherwise: |θ〉AB =

"
k |ϕk〉A ⊗ |ψk〉B

A mixed state θAB is

• separable iff there exists pk ∈ [0, 1], ρA(k), ρB(k)

st θAB =
"

k pkρA(k)⊗ ρB(k)

• separable iff there exists pk ∈ [0, 1], |ϕk〉A , |ψk〉B
st θAB =

"
k pk |ϕk〉A 〈ϕk|A ⊗ |ψk〉B 〈ψk|B

• entangled otherwise
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Operator-state isomorphism

V :L(HA,HB) → HA ⊗HB

MB|A /→ (1A ⊗MB|A′) |Ω〉AA′

V −1 : |Ψ〉AB /→ AA′ 〈Ω|Ψ〉A′B

• V (|ϕ〉B 〈ψ|A) = |ψ〉A ⊗ |ϕ〉B
• MB|A |Ω〉AA′ =

"
Mij |ij〉BA′ ∈ HA ⊗ HB for

MB|A =
"

Mij |i〉B 〈j|A ∈ L(HA,HB)

• AA′ 〈Ω|Ω〉A′B = 1B|A =
"

i |bi〉B 〈bi|A
• 1A ⊗MB|A′ |Ω〉AA′ = (MB|A′)T ⊗ 1A′ |Ω〉BB′

• V is an isometry

Quantum channels are completely positive, trace-

preserving, linear maps/ superoperators.

• trace preserving: Tr[EB|A[ρA]] = 1 for Tr[ρA] = 1

• positivity: EB|A[ρA] ≥ 0 for ρA ≥ 0

• complete positivity: EB|A⊗IR positive f any HR

• necessity of completely positivity: (IA⊗TB)ΦAB

has eigenvector 1√
2
(|jk〉 − |kj〉) with negativ

eigenvalue −1/2

• adjoint E∗: Tr[ΛE [ρ]] = Tr[E∗[Λ]ρ]
• unital E : E [1] = 1
• E trace-preserving ⇐⇒ E∗ unital

Important quantum channels

ρ → (1− p)ρ+ p diag[ρ] (dephasing)

= (1− p/2)ρ+
p

2
ZρZ

ρ → (1− p)ρ+ pπ (depolarizing)
,

1− 3p/4 1,
,

p/4σk, k = x, y, z

ρ → (1− p)ρ+ p |?〉 〈?| (erasure)
,

1− p (|0〉 〈0|+ |1〉 〈1|),√p |?〉 〈0| ,√p |?〉 〈1|

ρ → K†
0ρK0 +K†

1ρK1 (amplitude damping)
√
p |0〉 〈1| , |0〉 〈0|+

,
1− p |1〉 〈1|

Quantum instrument performs a measurement

and stores the outcome + post-measurement state

QXB|A : ρA /→
#

|x〉 〈x|⊗MB|A(x)ρAM
∗
B|A(x)

• Given POVM {ΛA(x)}, a qinstrument’s Kraus

operators KB|A(x) must satisfy

ΛA(x) = K∗
B|A(x)KB|A(x)

• TrB ◦ QXB|A[ρA] = measurement result only

without post-measurement state of ρA
• TrX◦QXB|A[ρA] = post-measurement state of ρA

only, forgetting the outcome. A Kraus represen-

tation. Thereby, every qchannel can be regarded

as a measurement by some POVM followed by

forgetting the measurement results.

• A POVM can have more than one Kraus op

ΛA(x) =
#

y

M∗
B|A(x, y)MB|A(x, y)

Transpose map T / swap operator F

• transpose T : M /→ MT , M ∈ L(HA,HB),

B 〈b′j |M |bk〉A |b′j〉B 〈bk|A /→ 〈b′k|M |bj〉 |bj〉A 〈b′k|B
• swap FAA′ = TA′ [ΩAA′ ] = (IA ⊗ TA′)[ΩAA′ ]

• FAB(|ϕ〉A ⊗ |ψ〉B) = |ψ〉A ⊗ |ϕ〉B
• TrA′ [FAA′ ] = 1A

• F 2
AA′ = 1AA′

• TrA′ [ST
A′ΩAA′ ] = SA

Kraus Ensemble

OperatorChannel

Stinespring Purification

P6.2

P6.2P6.5

P6.6 P6.3

V

T6.1

T5.3

P6.4

Steering

V

Choi

T5.1

P6.7

Steering

isometric relations

unitary relations

Choi map relative to basis {bi} for HA ≃ HB is

C : L(L(HA), L(HB)) → L(HA ⊗HB)

EB|A /→ EB|A′ [ΩAA′ ]

C−1(MAB) : ρA /→ TrA[TA[ρA]MAB]

• C is an isomorphism with inverse C−1

• C depends on basis {bi} chosen to define |Ω〉
• C(identity channel) = ΩAB

Choi representation (∼ density operators)

• EB|A is completely positive iff C(EB|A) ≥ 0

• EB|A is trace preserving iff TrB[C(EB|A)] = 1

• set of channels is a convex set of positive opera-

tors on HAB, whose marginal on A corresponds

to the identity. Extreme points are rank-one op-

erators subject to the condition on the marginal.

Kraus representation (∼ ensembles)

• EB|A is completely positive iff ∃ KB|A(j) st

EB|A[SA] =
#

j

KB|A(j)SAK
∗
B|A(j)
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• EB|A is trace preserv iff
"

j K
∗
B|A(j)KB|A(j) = 1

• {Λ(x) = K∗(x)K(x)}x is a POVM

• Kraus representations are not unique due to the

non-uniqueness of the Choi operator.

• Minimal number of Kraus operators = Choi rank

Stinespring representation (∼ purifications)

• EB|A is cp iff ∃ HR, VBR?A ∈ L(HA,HB⊗HR) st

EB|A[SA] = TrR[VBR|ASAV
∗
BR|A] ∀SA ∈ L(HA)

• EB|A is trace preserving iff V ∗
BR|AVBR|A = 1A

• smallest possible dR ≤ dAdB
• qchannels = unitary operations involving addi-

tional systems which we do not have access to

• for any dilations VBR|A, V
′
BR′|A there exists a

partial isometry WR′|R st V ′
BR′|A = WR′|RVBR|A

Purifications of ρA are normalized |ψ〉AR ∈ HA ⊗
HR such that ρA = TrR[|ψ〉 〈ψ|AR].

• canonical purification |Ψ〉AR =
√
ρA ⊗ 1R |Ω〉AR

• a purification always exists iff dimHR ≥ r (oth-

erwise Schmidt rank is smaller than ρA’s rank)

• minimal purifications have dimHR = r

• ρA, ρR = TrA[ΨAR] have same eigenvals s2k by

Schmidt decomposition (but distinct eigenfuncs)

• steering : any purification can produce every en-

semble decomposition by suitable measurement

Unitary relations of ensembles & Kraus operators

• For ensemble dec {pk, |ϕk〉}nk=1, {qj , |ψj〉}mj=1 of

the same density operator ρ, there exists an l× l

unitary matrix U (l = max(n,m)) st

√
qj |ψj〉 =

l#

k=1

√
pk 〈bj |U |bk〉 |ϕk〉

• For Kraus operators {Ki}ni=1, {Kj}mj=1 of the

same superoperator E , there exists an l × l uni-

tary matrix U (l = max(n,m)) st

K ′
j =

#

i

UijKi

Isometric relations of dilations & purifications

• For any two purifications |Ψ〉AR , |Ψ′〉AR′ , there

exists a partial isometry VR′|R st

|Ψ′〉AR′ = (1A ⊗ VR′|R) |Ψ〉AR

• For any two dilations VBR|A, V
′
BR′|A, there exists

a partial isometry WR′|R st

V ′
BR′|A = WR′|RVBR|A

If dimHR′ > (=) dimHR, the partial isometries can

be taken to be an isometry (unitary).

Steering purifications and Stinespring dilations

• Given a state ρA, suppose |Ψ〉AB is a purification

and {PX(x), ρA(x)} an ensemble decomposition.

Then there exists a POVM ΓB(x) st

TrB[Γ(x)ΨAb] = PX(x)ρA(x)

• In particular, let VB|A be the partial isom-

etry such that |Ψ〉AB such that |Ψ〉AB =
√
ρA ⊗ VB|A′ |Ω〉AA′ and {ΛB(x)} be the pretty-

good measurement associated with the ensem-

ble. Then ΓB(x) = VV |AΛA(x)
TV ∗

B|A.

• Given a channel EB|A, suppose VBR|A is a Stine-

spring dilation and {EB|A(x)}x is an ensemble

decomp. Then there exists a POVM ΓR(x) st

(Ex)B|A : SA /→ TrR[ΓR(x)VBR|ASA(VBR|A)
∗]

Schmidt decompositions

Pretty-good measurement

Measurement as coherent process

Information disturbance

• Measurements are disturb qsystems, but without

measurement one cannot learn anything.

• No disturbance implies no information gain: for

any qinstrument QXA|A st TrX ◦ QXA|A = IA,
there exists a probability distribution PX st

QXA|A = PX ⊗ IA (X,A are independent).

• Converse is not true.

• Rank-1 projective measurements are maximally

disturbing: let QXB|A a qinstrument st

MX|A = TrBQXB|A : ρA /→
#

x

|x〉 〈x|X 〈x|ρ|x〉 .

Then there exists ϕB(x) st QXB|A = EXB|X ◦
MX|A with EXB|X : |x〉 〈x|X /→ |x〉 〈x|X⊗ϕB(x).
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3 Quantum Hypothesis testing

Hypothesis testing

• Idea: find POVM to distinguish quantum states,

i.e. maximize Pguess(X|B)τ given CQ state τ

• For two states, τ = p |0〉 〈0|⊗ρ+(1−p) |1〉 〈1|⊗σ,

solved exactly (Bayesian and NP agree):

Pguess(X|B)τ = max
0≤Λ≤1

Pguess(X|B)Λ,τ

= max
Λ

Tr[ΛM ], st 0 ≤ Λ ≤ 1

Pguess(X|B)τ =
1

2
+

1

2
‖pρ− (1− p)σ‖1

• For more states, ρXB =
"

x PX(x) |x〉 〈x|X ⊗
ρB(x), no general solution known.

Pguess(X|B)ρ = sup
ΛXB

Tr[ΛXBρXB]

= sup
ΛXB

#
PX(x)Tr[ΛB(x)ρB(x)]

st TrX [ΛXB] ≤ 1B,ΛXB ≥ 0

• monotonicity: Pguess(X|C)σ ≤ Pguess(X|B)ρ, for

σXC = EC|B[ρXB]

Bayesian hypothesis testing

Pguess = max
Λ

{(1− p) + Tr[Λ(pρ− (1− p)σ)]}

f(M) = max{Tr[ΛM ] : 0 ≤ Λ ≤ 1}
f(M) ≥ Tr[{M ≥ 0}M ] = Tr[{M}+]

f̂(M) = min{Tr[θ] : 0 ≤ θ, θ ≥ M}
f̂(M) ≤ Tr[{M}+]

f(M) = Tr[{M}+] =
1

2
(Tr[M ] + ‖M‖1)

Pguess =
1

2
+

1

2
‖pρ+ (1− p)σ‖

Neyman-Pearson hypothesis testing

H0 = given state is ρ, error type I = 1− α

H1 = given state is σ, error type II = β

βα(ρ,σ) = min{Tr[Λσ] : 0 ≤ Λ ≤ 1,Tr[Λρ] ≥ α}
Λ∗ = {mρ− σ > 0}+ c{mρ− σ = 0}

β̂α(ρ,σ) = min
m,θ

{mα− Tr[θ] : mρ− θ ≤ σ, 0 ≤ θ,m}

θ∗ = {mρ− σ}+
• Neyman-Pearson lemma: likelihood ratio test

Λ(a) = {ρ− aσ}+ is optimal in βα(ρ,σ)

• Complementary slackness: constraints of dual or

primal are strictly satisfied, iff optimality.

• Slater condition: if primal (dual) feasible + dual

(primal) strictly feasible, duality gap is zero.

Distinguishability

δ(ρ,σ) := 2Pguess(X|B)τ − 1

= max
Λ

{Tr[Λ(ρ− σ)] : 0 ≤ Λ ≤ 1}

= min
θ

{Tr[θ] : ρ− σ ≤ θ, θ ≥ 0}

=
1

2
‖ρ− σ‖1

δ(EB|A,FB|A) = sup
ρ,Λ

Tr[ΛBR(EB|A[ρAR]− FB|A[ρAR])]

st Tr[ρAR] = 1, ρAR ≥ 0, 0 ≤ ΛBR ≤ 1

• faithfulness: δ(ρ,σ) = 0 ⇐⇒ ρ = σ

• triangle ineq: δ(ρ,σ) ≤ δ(ρ, τ) + δ(τ,σ)

• monotonicity: δ(EB|A[ρ], EB|A[σ]) ≤ δ(ρ,σ)

• joint convexity:

δ
-#

Pxρx,
#

Pxσx

.
≤

#
Pxδ(ρx,σx)

Fidelity

F (ρ,σ) = sup
R

max
|ψρ〉,|ψσ〉

| 〈ψρ,ψσ〉AR |

= ‖√ρ
√
σ‖1 = Tr

(/√
σρ

√
σ

)

• δ(ψρ,ψσ)
2 = 1− | 〈ψρ,ψσ〉 |2

• F (EB|A[ρA], EB|A[σA]) ≥ F (ρA,σA) and equality

for isometries EB|A[ρA] = VB|AρAV
∗
B|A

• F (ρ⊗ ρ′,σ ⊗ σ′) = F (ρ,σ)F (ρ′,σ′)

• Fpg(ρ,σ) = Tr[
√
ρ
√
σ]

• F (ρ,σ)2 ≤ Fpg(ρ,σ)

• δ(ρ,σ) + F (ρ,σ) ≥ 1

• δ2(ρ,σ) + F 2(ρ,σ) ≤ 1

Optimal measurement in classical case

• commuting ϕB(x) =
"

y PY |X=x(y) |y〉 〈y|Y
• optimal measurement is deterministic: maximize

conditional distribution x /→ PX|Y=y(x)

• optimal POVM els ΛB(x) =
"

y Q(x, y) |y〉 〈y|Y
• Pguess =

"
x PX(x)

"
y Q(x, y)PY |X=x(y) ="

y PY (y)
"

xQ(x, y)PX|Y=y(x)

Pretty good measurements

PPGM
guess (X|B)ρ = Tr[(1 ⊗ ρ

− 1
2

B )ρXB(1 ⊗ ρ
− 1

2
B )ρXB]

= Q(ρXB, 1X ⊗ ρB)

• Q(ρ,σ) := Tr[ρσ−1/2ρσ−1/2]

• Q fulfills joint convexity, monotonicity and iso-

metric invariance

• in classical case ΛB(x) =
"

y PX|Y=y(x) |y〉 〈y|Y
and the PGM is to the optimal measurement

• pretty good : for CQ state ρXB (X classical)

Pguess(X|B)2ρ ≤ PPGM
guess (X|B)ρ ≤ Pguess(X|B)ρ
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4 Communication Converses

classical info, classical channel, unassisted

WM ′|M (m′|m)

=
#

x,y

DM ′|Y (m
′|y)NY |X(y|x)EX|M (x|m)

Pagree ≤
min(|X|, |Y |)

|M |

classical info, classical channel, assisted

pinching EX|M=m,T [ρTT ′ ] ≤ 1X ⊗ ρT ′

WM ′=m′|M=m[ρTT ′ ]

= DM ′=m′|Y=y,T ′ ◦NY |X ◦ EX|M=m,T [ρTT ′ ]

Pagree ≤
min(|X|, |Y |)

|M |

classical info, quantum channel, unassisted

WM ′|M (m′|m) = Tr[ΛB(m
′)NB|A[ρA(m)]]

Pagree ≤
min(|A|, |B|)

|M |

cl info, q ch, assisted (superdense coding)

WM ′|M (m′|m) = DM ′=m′|BT ′ ◦NB|A ◦ EA|M=m,T [ρTT ′ ]

= Tr[ΛB(m
′)NB|AEA|M=m,T [ρTT ]]

Pagree ≤ min

*
|A|2
|M | ,

|B|2
|M | ,

|A||T |
|M | ,

|B||T |
|M | ,

|A||T ′|
|M | ,

|B||T ′|
|M |

+

=
|A|
|M | min (|A|, |T |) for |A| = |B|, |T | = |T ′|

quantum info, classical ch, unassisted

tool: PPT ineq: Tr[ΦABσAB] ≤ 1
|A| with PPT σAB

NQ′|Q[ρQ] = DQ′|Y ◦NY |X ◦ EX|Q[ρQ]

=
#

x,y

NY |X(y|x)ρQ′(y)TrQ[ΛQ(x)ρQ]

NQ[ΦQQ′ ] =
#

x,y

NY |X(y|x)ρQ(y)⊗ TrQ[ΛQ(x)ΦQQ′ ]

Pagree ≤
1

|Q|

q info, cl ch, assisted (teleportation)

PPT ineq: Tr[ΦABσAB] ≤ 1
|A| with PPT σAB

NQ′|Q[ρQ] = DQ′|Y T ′ ◦NY |X ◦ EX|QT [ρQ ⊗ ρTT ′ ]

NQ[ΦQQ′ ] = DQ|Y T ′ ◦NY |X ◦ EX|QT [ΦQQ′ ⊗ ρTT ′ ]

Pagree ≤ min

*
|X|
|Q|2 ,

|Y |
|Q|2 ,

|T |
|Q| ,

|T ′|
|Q|

+

quantum info, quantum ch, unassisted

pinching SAB ≤ |A|1A ⊗ SB for SAB ≥ 0

NQ′|Q[ρQ] = DQ′|B ◦NB|A ◦ EA|Q[ρQ]

NQ[ΦQQ′ ] = DQ|B ◦NB|A ◦ EA|Q[ΦQQ′ ]

Pagree ≤
1

|Q|2 min
0
|A|2, |B|2

1

quantum info, quantum ch, assisted

pinching: EA|Q[ΦQQ′ ⊗ ρTT ′ ] ≤ |A|
|Q|1A ⊗ 1Q′ ⊗ ρT ′

NQ′|Q[ρQ] = DQ′|BT ′ ◦NB|A ◦ EA|Q[ρQ ⊗ ρTT ′ ]

NQ[ΦQQ′ ] = DQ|BT ′ ◦NB|A ◦ EA|Q[ΦQQ′ ⊗ ρTT ′ ]

Pagree ≤
1

|Q|2 min
0
|A|2, |B|2

1
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5 Entropy & Mutual Information

Relative Entropy

D(ρ,σ) :=

2
Tr[ρ(log ρ− log σ)] supp(σ) ⊂ supp(ρ)

∞ else

• D(ρ,σ) ≥ 0 and D(ρ,σ) = 0 ⇐⇒ ρ = σ

• D(ρ⊗ θ,σ ⊗ τ) = D(ρ,σ) +D(θ, τ)

• D(ρAB,π⊗ρB) = D(ρAB, ρ
′
AB)+D(ρ′AB,π⊗ρB)

with pinched ρ′AB = PA[ρAB] (chain rule)

• ∀α ∈ (0, 1) : limn→∞− 1
nβα(ρ

⊗n,σ⊗n) = D(ρ,σ)

• D(EB|A[ρA], EB|A[σA]) ≤ D(ρA,σA)

• D(ρA,σA) ≥ −α log βα − h2(α)

Entropy

H(A)ρ = −Tr[ρA log ρA]

= −D(ρA, 1A) = log |A|−D(ρA,πA)

• H(A)ρ ≥ 0 for all ρ (duality)

• H(A)ρ = 0 iff ρ pure

• H(A)UρU∗ = H(A)ρ for unitary U

• H(A)ρ ≤ log |suppρ|
• H(A)!

k pkρk ≥
"

k pkH(A)ρk (convavity)

• H(A)σ ≥ H(A)ρ with σ =
"

k ΠkρΠk, where

{Πk} is a complete set of projectors

• binary h2(p) := −p log p− (1− p) log(1− p)

Joint Entropy

H(AB)ρ := −D(ρAB, 1AB)

• H(A)ρ = H(B)ρ for ρAB pure (duality)

• H(AB)ρ ≤ H(A)ρ +H(B)ρ (subadditivity)

• H(AB)ρ = H(A)ρ +H(B)ρ iff ρAB = ρA ⊗ ρB
• H(AB)ρ ≥ |H(A)ρ −H(B)ρ| (triangle ineq)

Conditional Entropy

H(A|B)ρ := −D(ρAB, 1A ⊗ ρB)

= log |A|−D(ρAB,πA ⊗ ρB)

• H(A|B)ρ = −H(A|C)ρ for ρABC pure (duality)

• − log |A| ≤ H(A|B)ρ ≤ log |A|
• H(X|B)ρ ≥ 0 for ρXB a CQ state (X classical)

• H(A|B)Φ = − log |A|
• H(A|BC)ρ = H(AB|C)ρ −H(B|C)ρ
• For EA′|A unital, FB′|B, ρAB, let ρA′B′ = EA′|A⊗

FB′|B[ρAB]. Then H(A′|B′)ρ′ ≥ H(A|B)ρ
• H(AB|C)ρ ≤ H(A|C)ρ +H(B|C)ρ (strong sub)

Mutual Information

I(A : B)ρ := D(ρAB, ρA ⊗ ρB)

= H(A)ρ +H(B)ρ −H(AB)ρ

= H(A)ρ −H(A|B)ρ

• I(A : B)ρ + I(A : C)ρ = 2H(A)ρ if ρABC pure

• 0 ≤ I(A : B)ρ ≤ 2min(log |A|, log |B|)
• I(X : B)ρ ≤ log |X| for CQ ρXB

• I(A : B)ρ = I(B : A)ρ
• I(A : B)Φ = 2 log |A|
• For EA′|A,FB′|B and ρAB, let ρA′B′ = EA′|A ⊗

FB′|B[ρAB]. Then I(A′ : B′)ρ′ ≤ I(A : B)ρ

Conditional Mutual Information

I(A : C|B)ρ := H(A|B)ρ −H(A|BC)ρ

:= H(B|A)ρ −H(B|AC)ρ

• I(A : B|C)ρ = I(A : B) for ρABC pure

• I(A : B|C)ρ ≥ 0 (strong subadditivity)

• I(A : B|C) = I(A : BC)− I(A : C)

Properties of the operator log

• Let A ∈ L(X), B ∈ L(Y ) pos. def. Then

log(A⊗B) = logA⊗ πB + πA ⊗ logB

• Let {Aa}a∈Σ pos. def. with mutually disjoint

support. Then

log

3
#

a

Aa

4
=

#

a

logAa

• If there exists a ONB such that a given operator

is block diagonal, then its log is also block diag-

onal in this basis with the block being the log of

the original block.

Important eigensystems3
a c

d b

4 3
a−b±D

2d

1

4
,
1

2
(a+ b±D),

D =
,

(a− b)2 + 4cd
3

a c2

d2 a

4 3
c/d

±1

4
, a± cd

3
0 1

1 0

4 3
1

±1

4
,±1

3
0 1

−1 0

4 3
±i

i

4
,∓i

3
1 1

1 1

4 3
1

±1

4
, 1± 1

3
1 1

1 −1

4 3
1±

√
2

1

4
,±

√
2

7



6 Noisy Channel Coding

(k, ε) code is a pair of encoder and decoder such that

δ(D ◦N ◦ E , 1) ≤ ε for an alphabet of size k = |M|.

Capacity and rate of a channel

• M∗(NB|X , ε, n) = largest k st there exists (k, ε)

code for N⊗n
B|X

• optimal rate R(NB|X , ε, n) =
logM∗(NB|X ,ε,n)

n

• ε-capacity C(NB|X , ε) = limn→∞R(NB|X , ε, n)

• capacity C(NB|X) = limε→0C(NB|X , ε)

Capacities of some channels

• C(BSC(q)) = 1− h2(q)

• C(BEC(q)) = 1− q

Capacity of noisy channel For any CQ chan-

nel NB|X & assoc state ωXB =
"

x P (X) |x〉 〈x|X ⊗
ϕB(x)

C(NB|X) = max
PX

I(X : B)ω, (weak converse)

C(NB|X , ε) = max
PX

I(X : B)ω. (strong converse)

• strong conv: max capacity is independent of ε

• weak conv: rates larger than C cannot transmit

with vanishing ε

Noisy channel coding converse For any CQ chan-

nel NB|X , every (k, ε) code satisfies

min
PX

max
σB

β1−ε(ωXB,ωX ⊗ σB) ≤
1

k
,

where ωXB =
"

x PX(x) |x〉 〈x|X⊗ϕB(x) for ϕB(x) =

NB|X=x.

Noisy channel coding achievability For any CQ

channel NB|X and error ε > 0, there exists a (k, ε)

code with
1

k
≤ min

η∈[0,ε]
min
PX

1− ε

η(1− ε+ η)
β1−ε+η(ωXB,ωX ⊗ ωB).
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