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In the course we have discussed six possible

physical rules or characteristics of living sys-

tems: 1) the principle to trade energy for order,

2) even though some of the order comes for free;

3) dynamics are neither trivial nor too complex

(usually scale sub-linearly with system size); 4)

criticality to allow for dynamically jumping be-

tween states; 5) modular and 6) fractal struc-

tures. In this document I want to conceptu-

ally argue for a constrained information opti-

mization, a notion I will define further into the

text, as another principle of biological organi-

zation. I will discuss what information is, how

it is related to thermodynamics, why informa-

tion is important for biological systems, but

can be optimized only constrained, introduce

the information bottleneck methods to formal-

ize constrained information optimizations, and

present two examples of living systems, where

a notion of optimal information processing has

been found.

Why would a living agent care about in-

formation? Imagine for example two bacteria

that are looking for food. Bacterium A swims

around randomly in the hope to come across

food eventually. Bacterium B, in contrast, can

”smell” food better and better the closer it gets

to the food, an ability that the bacterium can

use to direct its movement towards food. This

behavior is called chemotaxis, it will make for a

good example throughout this essay. Not sur-

prisingly, using its chemotaxing abilities bac-

terium B will be more successful in foraging

than bacterium A. The advantage bacterium

B has over bacterium A is that B can utilize

information more efficiently than A, informa-

tion about the location of nearby food. There

are many more examples one could name, from

cellular to organism levels of biological organi-

zation, simply transfer the above example to

finding and assessing possible mates, as an ex-

ample. This demonstrates how efficient infor-

mation processing can correlate with biological

fitness.

What are the natural limits to information

processing? One answer is noise. Most of us

will have failed at some point in our lives at

identifying objects using our eyes when there is

simply not enough light, but even a tiny source

of light might help us enough to do so. This

is our natural limit of information acquisition

due to noise. Just like us, microorganisms have

to deal with such fundamental limits caused by

noise, as the famous work by Berg and Purcell

demonstrates [1]. Imaging again a bacterium

sensing molecule X. One of the Berg-Purcell ar-

guments concerns a cell’s limit to measure the

local concentration c of molecule X. To make

our inner physicists happy, let’s straightforwardly

approximate the cell to be spherical with radius

r. The total number of molecules X inside the

cell will be proportional to the cell volume and
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the X’s concentration, N ∼ cr3, at any given

time, which the cell can measure only up to a

noise level δN ∼
√
N that can be taken to scale

with the square root, a fundamental scaling re-

lation in statistics. Thus, the relative error for

one measurement of molecule’s X concentration

is of order

δc

c
∼ δN

N
=

1√
N

=
1√
cr3

.

But wait, the cell has been optimized for bil-

lions of years thanks to mother evolution and

has the clever idea to now take n measure-

ments in a time frame T to decrease the error.

The cell has to be careful to not measure the

same molecules twice, or otherwise the samples

would not be statistically independent, which

forces the cell to wait roughly the time the X

molecules take to diffuse out of the cell, r2/D,

until a new measurement can be done1. With

n = T
r2/D

measurements, the limit becomes

δc

c
∼ 1√

nN
=

!
r2/D

T

1

cr3
=

1√
DTcr

.

This is an approximation for the limit of con-

centration differences a cell can detect. It tells

us that the only way for a cell to measure a

concentration cmore precisely is to increase the

duration of measurement or to grow (how an-

noying).

This is the story of noise, but there is an-

other part to the limits of information that

concern energy. More measurements do not

only take more time, they also burn energy,

which physicists have noticed only in the 20th

century. The classic thought experiment to

demonstrate this connection is Maxwell’s de-

mon, an idea that dates back all the way to

the year of 1867. Maxwell imagined an actor

with access to infinite information, the demon,

1Here D denotes X’s diffusion constant.

Figure 1: The Maxwell demon. In the left

panel, the demon quickly opens the door be-

tween the box A and B to allow the fast (red)

gas molecule to move to box B, after which

the demon closes the door again. Many iter-

ations of this procedure heat up the box B and

cool down the box A, as illustrated in the right

panel. Illustration from from Wikipedia.

that sits between two boxes filled with a gas

and connected via an initially closed door. Us-

ing its information about the speed of the gas

molecules, the demon would quickly open and

close the door to allow a fast gas molecule to

move from the left to the right box and sim-

ilarly allow slow molecules to move from the

right box to the left. After many repetitions

of this procedure, fast molecules would accu-

mulate in the right box and it warms up over

time, while the gas in the left box cools down.

This procedure increases entropy and thereby

seems to violate the second law of thermody-

namics. The other way round, if we agree on

the second law of thermodynamics there must

be some natural bounds on information com-

ing from thermodynamics. The paradox has

puzzled physicists until today and demon-like

systems have even been experimentally demon-

strated [2].

Landauer argued in 1961 that the informa-

tion processing capabilities of the demon must

be taken into account. He noticed that an era-

sure of information must be balanced by an en-

tropic cost, i.e. it must release heat, thereby
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making Maxwell’s demon obey the second law

of thermodynamics [3]. The erasure of one bit

of information costs 0.7 the thermal heat kBT ,

E = kBT ln 2.

In all fairness, I have to note that this ener-

getic cost is absurdly small, roughly 0.0175 eV

and possibly of no outstanding role in opti-

mizing information processing, but this para-

dox shows beautifully how deeply information

is connected to fundamental physics. In mod-

ern processors with billions of operations per

second, Landauer’s principle is thought to be-

come important, which has motivated modern

research on, for example, reversible computing

architectures [4].

If you have not learned about information

previously, Landauer’s principle might appear

like magic – alone the fact that physicists seem

to be able to talk about information quanti-

tatively. At this point we must halt and ask

the one question I assume would puzzle anyone

that hasn’t seen it answered yet: what even is

information? We have a natural understanding

of information, a university lecture is supposed

to be informative, scrolling through Facebook

as well2, I have the information how informa-

tion can be formalized, which you might not

yet have, and so on. Can this intuition be for-

malized? The important sentence here is the

following: Information between two quantities

represents how much knowing one quantity re-

duces your uncertainty about the other. Sup-

pose you have fallen in love with a person, but

you do not know what this person thinks about

you – you are uncertain about this person’s at-

titude toward you. To reduce your uncertainty,

you could ask his/her out and chat to assess

2Although this might make for a perfect segue into

a debate on information quality...

whether you two might have a future. Let H

denote an uncertainty function. Then your in-

formation the date, D, has provided you on

how much your love likes you, denote this by

A, is the difference of your uncertainty before

the date, H(A), and your uncertainty after the

date, H(A|D),

I(A;D) = H(A)−H(A|D).

On a more abstract level, the information con-

tent between two random variables X and Y is

given by

I(X;Y ) = H(X)−H(X|Y ).

Great, we have shifted the problem to finding

an uncertainty function. A great intuition for

uncertainty is the ”peakedness” of the proba-

bility distribution associated with its random

variable. Imagine a game, in which one of your

four best friends, two male, two female, are ran-

domly picked and you must find out by asking

yes/no questions who was picked. In the begin-

ning you are uncertain, the probabilities which

friend could have been chosen is uniformly 1
4 .

Suppose you ask whether the friend is male,

answered with yes, such that only two friends

remain. In other words, the answer has re-

duced your uncertainty about which friend was

picked. Now, your probability distribution is

more peaked, with two probabilities zero and

the other 1
2 . We learn: more peaked probabil-

ity distributions lower your uncertainty. This

might sound trivial, but comes in handy also

when dealing with highly involved settings. Re-

markably, under reasonable assumptions, Shan-

non proved in 1948 that there is a unique mea-

sure of uncertainty, the entropy [5]

H(X) = −
"

x

P (x) logP (x),
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where P is the probability distribution of the

random variable X. But what is this unit of

bits we saw in the Landauer’s principle? In-

formation and uncertainty are most frequently

measured in units of bits, in which the loga-

rithm in the above equation is taken with re-

spect to basis 2. To illustrate a bit, imaging a

fair coin. The uncertainty you have about the

outcome before you flip the coin is

H(coin) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1bit.

Similarly, you are twice as uncertain about the

outcome of two coin flips, two coin flips carry

2 bits of uncertainty.

After this digression into information the-

ory, we can return to our main question. We

have learned that information is on the one

hand highly valuable for a living agent, but on

the other hand costly and noisy. This motivates

me to postulate a constrained information op-

timization as a fundamental principle of life.

This principle could be formulated as:

Life is tuned to maximize informa-

tion content under the constraint of

minimal energy consumption for in-

formation processing.

In the following I will expand on this by intro-

ducing some theoretical concepts and examples

related to my proposed constrained informa-

tion optimization principle.

A neat approach for thinking about con-

strained information optimization was proposed

by Tishby, Pereira and Bialek in 1999 [6]. Ap-

plied to our setting, their idea was that an

agent must learn about the worldW by making

imperfect3 measurements M , which the agent

stores in its memory, S, in order to help with

future actions. Optimally, the agent would like

3Noisy, deficient measurement apperati etc.

to maximize the information about the world in

its memory, I(W ;S), while minimizing the in-

formation it must store, I(M ;S). We can state

the information bottleneck in equations as

argmaxM→S I(W ;S)− λI(M ;S),

where M → S is a rule on which parts of the

measurement to store and which to discard. In

other words, the agent tries to maximize ac-

curacy and compression, by squeezing as much

useful information about the world as possible

into its representation of the world, but com-

press out any irrelevant information. The pa-

rameter λ is used to shift priority between ac-

curacy and compression. This ”squeezing of

information” is the reason why the principle is

termed information bottleneck. It has proven a

useful framework to study all sorts of information-

related topics. Noteworthy, Tishby has begun

to successfully apply the information bottle-

neck to the theory of neural networks just a

few years ago, by which he can explain neural

network training in terms of two phases, infor-

mation uptake and compression [7].

What if we associate information directly

with rewards? A useful framework to treat such

constrained optimizations are Markov decision

processes (MDP). In a MDP, the agent nav-

igates its environment by choosing an action

a that might trigger a change in the system’s

(environment + agent) state s. State transi-

tions may be associated with a reward4. Fig-

ure 2 illustrates our beloved example of chemo-

taxis in the language of MDP. The cell, repre-

sented by a black circle, is looking for food, the

green tile, while trying to avoid dangers, the

red tile. The cell’s actions are to move around

the grid, which changes its position and thereby

4Rewards can be positive and negative, whereby neg-

ative rewards are rater penalties than rewards.
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Figure 2: Example of chemotaxis as Markov

decision process. An agent (black circle) can

take actions and sense traces of reward (food,

green tile) or danger (fire, red tile) to move

around the grid. The setup was motivated by

the setting of reference [8].

the state of the system. If it hits the green or

red tile the cell will be rewarded or punished,

respectively, all other state transitions are asso-

ciated with small penalties that could be inter-

preted as energetic costs. To achieve its goal,

the cell may sense gradients of information at

its current position, otherwise the cell is blind.

Agents capable of processing information more

efficiently are rewarded more. Therefore, the

cell would like to find a policy, i.e. a probabil-

ity distribution over possible actions given the

current state, that maximizes its utility (food).

In the example of figure 2, the optimal paths

walk in four steps from the bottom right corner

to the food source. In the language of the in-

formation bottleneck, the cell is blind and must

thus sense the world by taking a step in either

direction and measuring the concentrations of

reward and danger at this location, the infor-

mation content of which it wants to maximize

and which allows it to build an internal repre-

sentation of the world over time that is, how-

ever, associated with a cost of storage the agent

aims to minimize.

But enough of the abstract talk, how well

does biology perform in such a problem? An-

drews and Iglesias analyzedD. discoideum cells’

information optimality in chemotaxis [9]. In

their model, a cell senses chemoattractants and

responds by changing its direction of movement.

They use the previously developed local-excitation,

global-inhibition (LEGI) biochemical model for

chemotaxis to compare their theoretical predic-

tions. The LEGI model was developed to ex-

plain chemotaxis, with no motivation to max-

imize information processing. It has one pa-

rameter, a hill coefficient, that allows adjust-

ment of the accuracy of the chemosensing. In

the framework of information bottlenecks, the

cell would like to minimize information it has

to extract from the sensation in order to de-

cide for a response (compression) under the

constraint that the sensation should carry as

much information about the chemoattractant

field as possible (accuracy). The authors com-

puted the theoretical optimal trade-off curve

between information compression and accuracy

and compared this theoretical prediction with

the LEGI model. Amazingly, LEGI’s accuracy

curve agrees well with the author’s optimal trade-

off curve5 [9]. This result may again be taken

as a hint for a notion of information optimal-

ity in biological systems, but I presume more

examples are needed.

Another beautiful example for how nature

seems to have implemented such information

optimal systems is the positional gene system

in the early development of Drosophila. Dur-

ing development, a cell uses the concentrations

of so-called gap genes as a marker for its posi-

tion relative to the organism. Along the ante-

5At least for unbiased cells that are new to a

chemoattractant field.
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rior/posterior axis of the embryo, the expres-

sion levels of the four gap genes, hunchhback

(Hb), krüppel (Kr), giant (Gt), knirps (Kni),

all vary such that each combination of expres-

sion levels allows cell to deduce its own relative

position in the embryo with high precision. A

visualization of the expression pattern can be

found in the lower left plot of figure 3, where

position is plotted on the x-axis versus expres-

sion levels on the y-axis for the four gap genes

(different colors). How much positional infor-

mation, i.e. the information the gap gene con-

centration offers about the position of the cell

in the embryo, do these gap genes carry? In-

terestingly, the gap genes each provide about

2 bits of positional information, twice as much

as expected from an on/off switch [10]. This

suggests that the intermediate expression lev-

els6 provide significant additional information.

Taken together, however, the overlaps in ex-

pression patterns of the four gap genes reduces

their total information to about 4.2 bits. An

important result is that the interplay of gap

genes comes as close as 2% to the informa-

tion theoretic optimal positional system – a

hint for information optimality [10]? The au-

thors were buzzed and decided to simulate al-

ternative gap gene expression patterns in a bio-

physically involved, but accurate model of de-

velopment [11]7. They optimized the patterns

with respect to positional information for var-

ious initial conditions and compared the opti-

6The expression levels between zero and maximal ex-

pression levels.
7The study has been running for many years now,

but is still unpublished as of today. The here pre-

sented preliminary results were taken from a pre-

sentation by Tkacik at the 2019 Arnold Sommer-

feld School on the Physics of Life. A recording

of the presentation can be found at cast.itunes.uni-

muenchen.de/clips/CCw7QHGdeA/vod/online.html.

mal patterns’ positional information to the one

of roughly 4.2 bits found in Drosophila. Some

of the found optimal expression patterns are

illustrated in figure 3 along with Drosophila’s

pattern on the lower left. Strikingly, one of

Figure 3: Real world expression patterns from

Drosophila (lower left) compared to some of the

optimized gap gene expression patterns from

reference (all other). The top left expression

pattern is remarkably close to Drosophila’s on

the lower left. Image taken from a presentation

by Tkacik [11].

the optimal simulated patterns (top left in fig-

ure 3) is in close agreement to the expression

pattern observed in Drosophila, up to explain-

able deviations. The simulations also revealed

distinct optimal expression patterns that are

in parts more informative, ranging between 4.1

and 4.6 bit of positional information. However,

the Drosophila expression pattern is the most

resource-efficient in terms of associated protein

costs. This is a remarkable result: life has max-

imized information content and minimized en-

ergetic costs, how cool is that?

Fortunately, I could have picked many more

examples to discuss here. Think alone of neu-

roscience, the branch of science that almost

screams to be studied with information theory

and which is full of information-theoretic in-

teresting optimization concepts. Just to name

6
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some of the early examples, neurons were found

to match the stimulus-response of the stimu-

lus’ cumulative probability density, which max-

imizes the information transmission capacity

[12], and crickets are tuned close to the max-

imum information between the wind direction

and the four neurons encoding the wind direc-

tion [13]. Evolutionary biologists are also be-

coming increasingly interested in biological in-

formation as a fitness-increasing resource [14,

15].

Constrained optimization of information is

a nice contender for a physical principle of bio-

logical organization. However, research is still

far from understanding the role of information

in biology, just like most high-level functional-

ities of living systems. This is why one has to

treat the presented concepts with care, just like

anywhere in science. Sill, I find the so far re-

ported examples of constrained information op-

timization wonderful. Note alone the interdis-

ciplinarity of this essay: we have touched upon

information theory, which originated from the

theory of communication, the fundamental physics

of energy in Landauer’s principle, statistics and

machine learning through Markov decision pro-

cesses and the information bottleneck, and of

course biology. This reflects the modern shifts

in research towards interdisciplinarity over the

course of the past decades – an exciting oppor-

tunity for science.
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