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Summary



1 Overview

1.1 Spaces
L*(Q) = {v : ) — R integrable : / lu(z)]? dz < oo}
Q
HY(Q) = {v : ) — R integrable : / |grad v(z)|* dz < oo}
0
Hy(Q) ={v e H'(Q) tv|pq = 0}

L = v 1 : v\ xTr =
1) {eH(Q) JREX o}

ST M) ={veC®(Q) : VK € M :v|k(x) = ay +Brx, ak €R,
Bk R’ x€ K}
=81 (M) N Hy (Q)

(M)
(M)

Sp(M) ={v e’ (Q) :v|x € Qp(K), VK € M}
(M)

89 0(M) =83(M) N H(Q)
1.2 Norms
1fll, = Valf, f)

1/2
£l = 1l = ( /Q |f<x>|2dx>

1/2
Flay = £l = ( /Q ||gradf||2) = |lgrad fl| 20

11 () = 117 2(0) + 171 ()

On H}(Q), |-| is a norm equivalent to ||-||, .

1.3 Inequalities

el = llolll < Jluxofl < [lull + lv]] (Triangle)
luxoll, < flull, +1lvl,
(u,v) < 2(u,v) < [Jv]|* + [Jul? (Binomial)

2 2
a(u,v) < flully + vl

2
/uvdx §/ |u|2dx/ v|? dz
Q Q Q

[{w, o) < [lull[[o]

(Cauchy-Schwartz)

la(u, v)| < [lullgllvll, = Va(u, u)a(v,v)

lluoll 2 () < diam(Q)||grad uollp2(q) (Poincaré-Friedrich 1)

[uxll2(q) < € diam(Q)||grad u«|[12(q) (Poincaré-Friedrich 2)
lullp2(q) < Cllgrad ul[ 2 (q) + Dllullz2(90)

|\u||2Lz(3Q> < Cllull 2oy llull g1 () (Multiplicative trace)

la(u,v)| < v/a(u,u)a(v,v)

L) < I fllpllully < Cllull g (q
lla+ bl < |la— bl + 2|al|
lla+ bl < [la— bl +2[[b]]

where u € HY(Q), ug € H}(Q), us € H (Q)s.

J bounded from below for pos. def. bilinear form a on Vj

AC > 0: |l(u)] < Clull, Yue W

Continuity for linear form [ on Vj

AC > 0: |l(v)]| < C|lv|| Vv € Vo,

for bilinear form a on Vj
K >0 |a(u,v)] < K|lull||lv]] Yu,v € Vo,

1.4 Formulas

Multidimensional Taylor expansion
f(x 4+ h) =f(x) + Df(x)h + O(h?) for h — 0
F(z +dz,y +0y) =F(z,y) + 02 F(z,y)0x + Oy F (z,y)dy
%8%F(ac, y)62? + 0.0y F(z,y)Sxdy+

1
50y 0y F(2,y)dy + O(|oxl” + oy ]*)

Theorem 1.1 (Integration of barycentric coordinate func.)
For any non-degenerate d-simplex K with barycentric coordinate
functions Ay, ..., g1 and exponents aj € N for j=1,...,d+1,

lag!. . agaq!
AST A9 dy = dIK Ay Gdil :
/K 1 d+1 | |(a1+a2+...+ad+1+d)!

Va e Ng™.

Theorem 1.2 (Gauss’) With n: dQ — R? denoting the exterior
unit normal vectorfield on 0Q) and dS indicating integration over a
surface, we have

/ div j(z) da = / j(@)n(z)dS(z) Ve (Cr,(Q)%
Q o0

Theorem 1.3 (Green’s first formula) For all vector fields j €
(Chw(Q))? and functions v € CL,(Q) holds

/j gradv dx:—/divjv dm+/ j-nwvdS.
Q Q a0

Conversation of energy for all control volumes V'

/ j~ndS:/fdx,
ov \4

power flux through surface V' = heat production inside V,
where f € C3,,(Q) is a heat source or sink.
Fourier’s law

x € Q)
x € Q)

(Steady)
(Moving)

j(x) = —r(x) grad u(x),
j(x) = —k(x) grad u(x) + v(x)pu(x),
where j denotes heat flux, u temperature, and x heat conductivity.

The first term corresponds to diffusive heat flux and the second term
to convective heat flux.

2 BVP < LVP
2nd-order elliptic Dirichlet problem
—div(a(x) grad u(x)) = f(x)
u(x) = g(x)

in O,
on 0Q)

Seek u € H'(Q) with u|gq = g such that

/Qoe(x) grad u(x) grad v(x) dx = /Qf(x)v(x) dx



for all v € H}(Q).
2nd-order elliptic Neumann problem

—div(a(x) grad u(x)) = f(x)
~ —h(x)

in O,

a(x) gradu(x) -n on 0Q)

Seek u € HL(Q) such that
/ a(x) grad u(x) grad v(x) dx = / F(x)v(x)dx + / hvdS
Q Q o0

for all v € HL(Q).

2nd-order elliptic mixed Neumann problem

—div(a(x) grad u(x)) = f(x) in Q,
u(x = (x on I'g C 9Q),
a(x)gradu(x) -n = —h(x) on 0O\Tg

Seek u € H'(Q) with u = g on Ty such that

hvdS
Q\rg

/ a(x) grad u(x) grad v(x) dx = / F(x)v(x)dx + /
QO Q 0
for all v € H(Q) with vy, = 0.
2nd-order elliptic Radiation problem
—div(a(x) grad u(x)) = f(x)
a(x)gradu(x) -n="¥(u)

in (),
on 0Q)

Seek u € H'(Q) such that
/Qa(x) grad u(x) grad v(x) dx + /ao Y (u)dS = /Qf(x)'u(x) dx

for all v € H'(Q).

3 Basis Functions and Local Shape Functions

3.1 1D Tent Functions
T—Tj—1
. atj:_a:]j_l T e [ijlvxj]
J — —TTTj41
by(@) = o @ € [z, 2501]
0 otherwise
1 ) .
| Fraal  © € @-na)
j _ o
Ol (z) = Tz, TE (25, 2541)
0 otherwise

1
/ b (2)biy (z) dz = {TODO
0

0 i —j| > 2
1 . .
i i —1/hj41 j=1i+1
Db (1) Dby () do = I+
[ otpatiaan = T 2T

1/hi+1/hiy1 1<i=j<M-1
3.2 2D Tent Functions

TODO

3.3 2D simplicial Linear Local Shape Functions
Unit triangle with vertices al7 a27 a’.

Area formula |K| = 1|eq||e2|sinws.

1 2, (a3 — a3 le1] 2y 1
A = — — = — — .
1(x) 3K (x —a”) <a‘i’ _a? 2|K|(X a®)-n

1 3, (a3 —al lea] 3y 2
A = —(x— = — _ .
2(x) 2|K|(X a”) <a% b 2|K|(X a”)-n°,

1 3\ (a3 —a3 lea] 1. 3
Aa(x) = —— (x — =19l x_aly.
3(x) 3] |(x a”) <a% ol 2] l(x a’)-n

Element stiffness matrix A;; = f  grad A; grad A; dx is given by

1 cot wg + cot woy —cotwsg — cot wo
A= 3 — cot ws cot wz + cot wq —cotwq ,
— cot wa —cotwq cot wg + cot wy

where w; denotes angle of the i-th corner.

The 2D triangular mass matrix M;; = fK AiAj dx is given by

2 1 1
M:%121
1 1 2

3.4 2D simplicial Linear Local Shape Functions on
Unit Triangle

Unit triangle with vertices at = (0,0)7, a? = (1,0)7, a% = (1,1)7.

)\1()() :1—.T1,
A2(x) = z1 — 22,
A3(x) = 2

The element stiffness matrix A and mass matrix M for the triangle

with vertices a', a?, a® are (this form generally holds for all right

triangles with catheti of same length)

L1 -1 oo L2 1
A=Z|-1 2 -1), M=g{1 21
0 -1 1 11 2

3.5 2D simplicial Quadratic Local Shape Functions

Let )\, denote the 2D linear local shape functions.

1 2
M= N — DN A =4NN, forpy = 2 ;a
2 3
Ao = (20— 1Ny A5 = 4X\p)\s  for py = = ;a
1 2
A3 = (205 —1)X; A = 4N\ for pg = = ;ra

3.6 2D Tensor Product Linear Local Shape Functions

b (x) = (1 —21)(1 - 2), b ()

b3 (x) = 21 (1 — z3), by (x) = (1 —21)z0

172

4 Quadrature
Trapezoidal rule

b
| e 50w + 1)
Composite trapezoidal rule
b 1 M
JRCUET > lfler-1) +1(en)
@ =1

2D trapezoidal rule for triangle K with vertices al7 a27 a’

[ 1e0ax~ Bl (1) + @)+ r1at)
K

Composite midpoint rule

b M
/ fla)de = 3 (P +2”‘1)
a =1
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5 Second-order Scalar Elliptic Boundary Value
Problems

5.1 Equilibrium Models

Configuration space, domains in this course, derivation of potential
energy for taut membrane using spring model, continuity require-
ments for membrane functional.

Taut membrane model: Potential energy functional under
vertical loading f is given by

D) = [ 0 gwact ) x)uo)

Typical arrangement, uniformly positive definite matrix, boundary
conditions and configuration space.

Electromagnetic field energy

1

Jg(u) = 5 /Q(s(x) grad u(x)) - grad u(x) dx,

where ¢ : Q — R>? is the dielectric tensor, symmetric and uniformly
positive definite.

Definition 5.1 (Quadratic functional) on a real vector space Vj
is a mapping J : Vo — R of the form
1

J(u) = §a(u, u)=l(u)+ec, uep,
where a : Vo X Vo — R is a symmetric bilinear form, 1 : Vo — R a
linear form [, and c € R.
Definition 5.2 (Quadratic minimization problem) A  mini-
mization problem

ux = argmin J(u)
ueVy

is called a quadratic minimization problem if J is a quadratic
functional on a real vector space Vj.

Affine configuration space V can be written as V' = ug + V4.
Then, usx = argmin, ¢y J(u) = up + argmin, ey, J(uo +u)

Definition 5.3 (Positive definiteness) A (symmetric) bilinear
form a : Vo x Vo — R on a real vector space Vy is positive def-
inite if u € Vo\{0} if and only if a(u,u) > 0.

Theorem 5.4 (Uniqueness of minimizer) If the bilinear form
a: Vo x Vo — R is positive definite, then any solution of

us = argmin J(u), J(u)= %a(u, u)—l(u)+c

ueVy
is unique for any linear form 1 : Vo — R.

Definition 5.5 (Energy norm) A symmetric positive definite bi-
linear form a : Vp x Vo — R induces the energy norm

lall, = Va(u,u).

Lemma 5.6 (Boundedness/ continuity of linear form) The
quadratic functional J based on a symmetric positive definite
bilinear form a is bounded from below on Vy if and only if

3C > 0: |l(u)| < Cull,, Yue Vo,

where ||-||, is the energy norm induced by a. Such linear forms are
also called continuous linear forms.

Proof, example of non-existence.

5.2 Sobolev spaces

Motivation We would like to find the largest space on which J is
still well defined, i.e. {functions v:Q — R : a(v,v) < co}.

Definition 5.7 (L2-Space) of square-integrable functions on Q is
given by

Vo :={v: Q — R, integrable : / |1)(;1:)|2 dz < oo}
Q

and denoted L*(Q)). It is a normed space with norm

1/2
1ollg = 1]l z2(q) == ( /Q |v(m>2dm) :

Problem with L2-spaces An arbitrarily small change in energy
of u is sufficient to impose any boundary values, i.e. ||u— iin||, — O
for n — oo, where tildeuyn has arbitrary boundary values.

Definition 5.8 (Sobolev space H1(Q)) of integrable functions
on Q) with square integrable gradient (that vanishes on the bound-
ary 0Q)) is given by

HY(Q): = {U : QO — R, integrable : / | gradv(z)|? dz < oo}
o)

H{(Q) : = {UEHl(Q) =0 onaﬂ}

1/2
vl = |vlg1(q) = (/ | gradv]® dw) ,
Q

2 2 2
lollE () = lIvllo + [0l )

with norm

Theorem 5.9 (First Poincaré-Fridrichs inequality) If QO C
IRd, d € IN is bounded, then

l[ully < diam(Q)||gradull, Yue Hgy(Q)

Corollary 5.10 (Condition for unique minimizer on Hg(Q)))
If f € L?(Q) then u — fof(a:)u(:c) dz is a continuous linear func-
tional on HL(Q).

Proof, how to work with Sobolev spaces.

Theorem 5.11 (Continuity conditions for H!(Q)) Let Q be
partitioned into sub-domains Q01 and Qga. A function u that is con-
tinuously differentiable in both sub-domains and continuous up to
their boundary belongs to Hl(Q) if and only if it is continuous on
O, ie fori=1,2

uwe CH (), (@) = (ue HY(Q) «—= uec’(Q)).

Mental replacement for H' C,,(Q) C H'(Q)

5.3 Variational Formulations

Configurational derivative

J(u+tv) — J(u)

DJ(u,v) := lim ; ,

t—0

Yv eV

Meta-Theorem 5.1 (Linearity of configurational derivatives)
For 7sufficiently smooth” J : V. — R the configurational derivative
DJ : V x Vo — R is linear in the second argument

DJ(u;au+ pw) = aDJ(u;v) + BDJ(u;w) Yo,w € Vp, Va,B € R.

Minimizer satisfies variational equation If J :V — R is

”sufficiently smooth”, the variational equation
DJ(ux,v) =0 Yov €V,

provides a necessary condition fulfilled by every global minimizer of
J.



Theorem 5.12 (QMP <= LVP) For a quadratic functional
J(v) = Sa(v,v) —l(v) + ¢ on a vector space Vo and with a sym-
metric positive bilinear form a(-,-) are equivalent:
e the quadratic minimization problem (QMP) for J has a unique
minimaizer usx € Vj,

e the linear variational problem (LVP)

weVy: a(u,v)=Ilv) YweW

has a unique solution ux € V.
Needle loading example: § ¢ L?, no solution exists.
Continuous dependence A small perturbation of data f — f +

0 f leads to a perturbed solution u — u + du satisfying

[duly < diam(Q)[5/]|o-

Summary |||, determines the (Sobolev) space and "I has to fit this
space”, i.e. ; has to be bounded w.r.t. ||-||,, otherwise no equilibrium
exists.

5.4 Boundary Value Problems (BVP) for Equilibrium
Models

We would like to derive the PDE associated with the LVP.

Lemma 5.13 (General product rule) For all j € (C*(Q))4,
v e CHQ) holds div(zv) = vdivj+ j- gradv.

Theorem 5.14 (Gauss’) With n: 0Q — R? denoting the exterior
unit normal vectorfield on 0Q) and dS indicating integration over a
surface, we have

/ div j(z) dz = / j(x)n(x)dS(z) Vje (Cr,(Q)%
Q o0

Theorem 5.15 (Green’s first formula) For all vector fields j €

(Cpw(Q))? and functions v € Cpy,y (Q) holds

/j gradv dx:—/divjv d:z:Jr/ j-novdS.
Q Q o0

LVP — PDE Use Green’s theorem and the fundamental lemma
of calculus of variations.

Integrated boundary conditions If v does not vanish on the
(entire) boundary, set v € C§°(Q)) and eliminate boundary terms.
Then switch back to original v € V and use the resulting PDE to
eliminate terms in the previous formulation. This yields a boundary
condition.

Extra smoothness for LVP — PDE The derivation of PDEs
from LVPs hinges an extra smoothness of solution v of LVP. There-
fore, LVP solutions (weak solutions) are more general than PDE
solutions (strong solutions).

Non-pointwise boundary condition For some problems the
boundary condition cannot be stated as a pointwise condition, i.e.
only in integral-form. Try to insert a constant function, e.g. v=1,
and check if the condition can be fulfilled via a pointwise condition.
Check exercise 2.6/e for details.

5.5 Diffusion Models: Stationary Heat Conduction

Conversation of energy for all control volumes V'

/ j-ndS:/fdx,
ov 14

power flux through surface V' = heat production inside V,
where f € Cp,,(Q) is a heat source or sink.
Fourier’s law

j(x) = —k(x) gradu(x), x€Q,

where j denotes heat flux, u temperature, and x heat conductivity.

5.6 Boundary Conditions

Mixing boundary conditions Different boundary conditions
may be imposed on different boundaries as long as exactly one bound-
ary conditions is imposed on each boundary.

Dirichlet boundary condition Temperature u is fixed with g :
0Q) — R prescribed

u=yg on 0.

Neumann boundary condition Heat flux j through 0Q is fixed
with h : 9Q — R prescribed

j-m=—h on 9Q.

Radiation boundary condition Heat flux through 9Q) depends
on (local) temperature with increasing function ¥ : R — R

jrn=Y(u) on Q.

Combined with Fourier’s law, we get the Robin boundary condition

gradu-n+~yu =g on 0Q.

5.7 2nd-order Elliptic Variational Problems: BVP —
LVP

Convert BVP — LVP

(i) Test PDE with smooth functions. Do not test where the solu-
tion is known e.g. on the boundary (instead set v = 0 there).

Integrate over domain
Perform integration by parts, e.g. by using Green’s first formula

Optionally, incorporate boundary conditions into boundary
terms.

Choose suitable function space (Sobolev space).
Example conversions for Dirichlet, Neumann, and Radiation BVPs.

Balance condition for Neumann BVP Neumann BVP need
an additional condition to ensure uniqueness: u € H(Q)

Theorem 5.16 (Second Poincaré-Friedrichs inequality) If
QcC ]Rd, d € N, is bounded, then

3C =C(Q) > 0: [lu]ly < C diam(Q)|gradull, Yue HL(Q)
5.8 Essential and natural Boundary Conditions

« Essential boundary conditions are directly imposed on trial
space and (in homogeneous form) on test space.

« Natural boundary conditions are enforced only through the
variational equation.

Admissible Dirichlet data If g : 0Q) — R is piecewise continu-
ously differentiable (and bounded piecewise derivatives), then it can
be extended to an ug € H'(Q) if and only if it is continuous on

o0Q.

Asmissible Neumann data h € L?(9Q) (and hence h €
C’gw (0Q))) provides valid Neumann data for the 2nd order elliptic
BVP. In particular, h may be discontinuous.

Theorem 5.17 (Multiplicative trace inequality)

3C = C(Q) > 0: [[ullF2 (o0 < Cllwll g2y lull gy Vo€ HY(Q)



6 Finite Element Methods (FEM)
6.1 Galerkin Discretization
Basic idea of Galerkin discretization

(i) Replace Vp (dim Vy o0) in LVP with a finite dimensional
subspace Vy v C Vp called Galerkin (or discrete) trial space/
test space (dim Vy v = N).

Introduce (ordered) basis By = {bk,...,bN} C Vo,N -

Assemble matrix A;; = a(bly, b?v) and right-hand side vector
pi = (b))

Solve LSE Au = ¢, where the solution p = (u1, ...

(iv) )T are

s UN
the coefficients of the solution uy = Zgil ,ukbfv.

LVP discretization Ritz-Galkerin discretization of abstract (lin-
ear) variational problem

discrete

ueVy:a(u,v) =1lv) YveVy —

uny € Von ta(un,on) =l(vy) Yoy € VN

QMP discretization Ritz-Galerkin discretization of minimization
problem for quadratic functional J : Vj — R

u = argmin J(v) discrgte
veVy

un argmin J(vy)
’UnGV())N

Theorem 6.1 (Existence 4+ uniqueness of sols. of disc. LVP)
If the bilinear form a : Vo x Vo — R is symmetric and positive
definite and the linear form [ : Vo — R is continuous in the sense
of it exists Cy > 0 such that |l(u)] < Cylull, for all u € Vg, then
the discrete wvariational problem has a unique Galerkin solution
un € Vo, that satisfies the stability estimate

lunlly < Cr.

Theorem 6.2 (Independence of Galerkin solution of basis)
The choice of the basis B has no impact on the (set of) Galerkin
solutions up .

Lemma 6.3 (Change of basis) Consider two bases B
{k,...,08}, B {b%,..., BN} related by the (regular) basis
. . N,N . i N ok
transformation matriz S € R ~accorclmg to by = Zk:l Sikby-
Then the Galerkin matrices A, A € IRN’N, the righ-hand side
vectors @, @ and the coefficient vectors w, fi, respectively, satisfy

A=545T, =S¢, p=85Tpu

Numerical properties like conditioning and sparsity depend on

the choice of basis and are important for efficient solvers.

Derivations of LSE, change of basis.

6.2 1D Linear FEM
Domain Q = [a, b]
Mesh and properties
e Partition x ={a=z0<z1 <...<zp_1 <zps =}
o Mesh M = {(zj_1,2;): 1 <j < M}
o Equidistant mesh for z; = a + jh, h = ZFW‘I
o Cells [zj_1,2;] for j=1,...,M
o Cell size hj := |zj —x;_1|for j=1,..., M
o Meshwidth hpg 1= max; |z; — z;_1|
Test space

Vov = 81o(M) := {v € C%([a,b]) : v(a) = v(b) =0,

Vg, 2, linear,i =1,... M}

. 1 =3
Basis b, (x;) = . J, for more info see section 3.1.
N .
0 i#]
Matrix A
1 1 1
mth TR 0 0
1 1 1 1
a—| T mtTE TR
. 1
1 !
0 T hvm-1 hm—a + har

Right-hand side vector ¢ using composite trapezoidal rule for
1<k<N

b
o= [ @) do G+ b)),

6.3 2D Triangular Linear FEM
2D triangular Meshes

Triangulation Requirements for a proper triangular mesh:
(i) M ={K;}M,, M €N, K; = open triangle
(i)
(iii)
(iv) intersection: for i # j K; ﬂfj is either empty, an edge of both
triangles, or a vertex of both triangles.

disjoint interiors: K; N K; = @ for i # j

tiling/ partitioning property Ufil K, =0Q

Data structure for triangles could for example store for each
vertex i its coordinates (z1,z5) and the three vertex indices of every
triangle K.

i@y owh | Ky gy i s
RS 00 1 8
1 -1 0 1 1 4 8
2 1 5 4 7 8

Space of linear FE functions
Vo =ST(M) ={v e C?(Q) : VK € M 1 0|k (x) = aj, + Bkx,
axg ERBx eR* xe K} C H'(Q)
Nodal basis functions
1 x=y
{0 y € VIM)\{x}
Dimension dim &Y (M) = #V(M)

Discussion on existence of such basis functions

Basis by (y)

Sparse Galerkin matrix
(Nodes ',z € V(M) not connected by an edge
Vol(supp(by) ﬂsupp(bg\,)) =0) = A;; =0.

—

Computation of Galerkin matrix

Assembly We would like to assemble the global Galkerin matrix
A from smaller local matrices A .

Example of assembly Consider two points ;cl, ;z_cj connected by
an edge of triangles Ky, Ko. Then A;; = fQ grad ij grad by dx =

[, grad by |k, gradby|k, dx + [ gradby|k, gradbiy|k, dx.
Instead of directly computing A, we can assemble A using the
matrices Ag, and Ag,.

Barycentric coordinate functions )\; of triangle K are the

global basis functions restricted to Ky,

A = baomika), i=1,2,3.

Ky,



Theorem 6.4 (Integration of barycentric coordinate func.)
For any non-degenerate d-simplex K with barycentric coordinate
functions A1, ...,Ag41 and exponents aj € N for j=1,...,d+1,

R
K

Data structure dofh maps local to global indices such that

aplog!. . agyq!
(a1+a2+...+ad+1 -Q-d)!7

Qd+1
o )‘d+1

dz = dI|K]|

dofh(k,!) = global number of vertex [ of k-th cell,
xdofED _ 5l when al7 a2, a® are vertices of Ky,

forl € {1,2,3}, ke {l,...,N}, N = #V(M).

Algorithm 1 Efficient assembly of Galerkin matrix

for all elements i = 1,..., M do
Get vertex indices i; with j = 1,2, 3 of the i-th element

Store the element’s vertices coordinates x*/
Compute element matrix Ay, for the vertices
for k,1=1,2,3 do

1:
2
3
4:
5
6 ijmjz = Ajkyjl + (AKi)k,l

Computation of r.h.s vector

Assembly of r.h.s. vector

v = Jq F(x)b), dx = Y kwick Jx F(x)h |k (x) dx

Quadrature for r.h.s. vector wusing 2D trapezoidal rule is

() = Jic N () dx~ gl f(ad)

6.4 Building Blocks for General Finite Element Meth-
ods

6.4.1 Meshes/ Triangulations

Definition 6.5 (Mesh) or triangulation of Q C R? s a finite col-

lection {Ki}i]\ip M € N of open non-degenerate (curvilinear) poly-
gons (d = 2)/ polygons (d = 3) such that

(Z) 5:Ui?i
(it) KiNK; =0 < i#j,

(iii) for alli,j € {1,..., M} for i # j, the intersection K; N K is
either empty or a vertez, edge, or face of both K; and K.

6.4.2 Polynomials

Definition 6.6 (Multivariate Polynomials) The space of multi-
variate (d-variate) polynomials of (total) degree p € Ny is defined
as

Pp(RY) = z— cat®, ca €R

>

alNg, |a|<p

Lemma 6.7 (Dimension of spaces of polynomials)
d
dim P, (R?) = ( ;p) Vp € No,d € N

Definition 6.8 (Tensor Product Polynomials) The space of
tensor product polynomials of degree p € IN in each coordinate di-

rection is defined as
Ja € ]R} .

P p
Iy
T — Cly,...,lq%1

11=0 1q=0
Lemma 6.9 (Dimension of spaces of tensor prod. polyn.)

1
...xdd, ..

Qp(RY)

dim Qp(R%) = (p+1)?  VYpeNy,deN

Va e Ng™.

6.4.3 Basis Functions

Requirements on basis functions for a finite element trial/ test
space Vp N

(i) By := {bk,...,bN} is basis of Vy y with N = dim Vp y

(ii) each bZ}V is associated with a single geometric entity (cell/ edge/
face/ vertex) of M

(iii) supp(by) = Ugepmpc®
face/ vertex p

K if bly is associated with cell/ edge/

Sparse Galerkin matrix For supp(b%;) ﬂsupp(bg\,) 0

A;j = 0 ensures that nnz(A) = O(N).

—

Definition 6.10 (Local shape functions) Given a finite ele-
ment function space on a mesh M with global shape functions bz}v
fori=1,..., N, the set of local shape functions on K € M is given
by {b% |k, K C supp(b})}.

6.5 Lagrangian Finite Element Space

Definition 6.11 (Simplicial Lagrangian finite element space)
Space of p-th degree Lagrangian finite element functions on simpli-
cial mesh M

Sp(M) :={v e C°(Q) : v|x € Pp(K) VK € M}

Definition 6.12 (Tensor product Lagrangian finite el. spaces)
Space of p-th degree Lagrangian finite element functions on tensor
product mesh M

Sp(M) :={ve C’(@Q) :v|x € Q1(K) VK € M}.

Construction of basis functions The general procedure is to
show that a cardinal basis of continuous functions exists for a given
set of interpolation nodes. First choose a proper set of interpolation
nodes. Then choose local shape functions b% and glue them together
such that the resulting function is continuous.

Hybrid meshes in 2D use simplicial Lagrangian FE for triangles
and tensor product Lagrangian FE for rectangles, i.e.

RQ K . . 1
ve Hl(Q) Lol € P 2) € M is triangle
91(R®) K € M is rectangle

Sp(M)

6.6 Implementation of Finite Element Space
6.6.1 Mesh

We have O(1)-access from cells to edges, vertices and neighboring
cells.

Numbering convention

Geometric information

6.6.2 Quadrature
Transformed quadrature rule

p A
/Kf(X)dxz;wzf(&z) - /Kf(x)dx:z

With le = (:Jl, £ZK = q)K(él)

K| S~ Ko
|f(|;wz f(&)

Definition 6.13 (Order) A quadrature rule is of order q € N if
e for a simplex K it is exact for all polynomials f € Pq_l(]Rd),

o for a tensor product element K it is exact for all tensor product
polynomials f € Qq—1(RY).

Order is invariant under affine transformation.

6.6.3 Treatment of essential Boundary Condition

Offset function trick for 2nd-order elliptic Dirichlet problem with
non-zero data. Seek u € H'(Q) with u|pn = g such that

/Qoe(x) grad u(x) grad v(x) dx = /Qf(x)v(x) dx



for all v € HZ(Q). This problem is equivalent to: Seek w € H}(Q)
with u|gn = g such that

/ a(x) grad w(x) grad v(x) dx =
Q
/ —r(x) grad ug grad v + f(x)v(x)dx
Q
for all v € H} (Q) with offset function ug € H*(Q) satisfying ug = g

on 0Q).
Function ug for Vy = SY(M) and Dirichlet data g € C°(9Q) use

>

XxEV(M)NOQ

up = g(x)b,
where b}, denotes the tent function associated with x € V(M).

LSE with essential boundary condition is given by

Agv = — Ay,

where Ag € RM'Y is the Galerkin matrix for space 8P o(M)

Ao Ago

Apo  Asps

SY(M). The solution can be obtained from u ~ uy = ug + wy =
M j N j

Zj:NJrl Vb + Zj:l vjbyy-

6.7 Parametric Finite Elements

and A = ( > € RMM the Galerkin matrix for space

Lemma 6.14 (Presevation of polynomials under affine pullb.)

If®: R - R? is an affine (linear) transformation, then
* dyy _ d * dyy _ d
" (Pp(RY)) = Pp(RY) and @7 (Qp(RY)) = Qp(IRY).

This section is TODO

7 Finite Differences (FD) and Finite Volume
(FV)

7.1 Finite Differences

Replace derivatives with difference quotients in finitely many
points, i.e. at the nodes of a mesh/ grid.

ou(z) _u(x+h)—u(z)
ox h
0?u(x) _u(z+h) =2u(z) +u(zx—h)
oz h2
9%u _u(a+h,b) —2u(a,b) +u(a—h,b)
?ﬁ‘x:(a,b) ~ 12
9%u _ufa,b+0b) —2u(a,b) +u(a,b—h)
@‘x:(a,b) ~ 12
—u(a—h,b) —u(a+ h,b
7Au‘x:(a,b) ~ ( )hQ ( )
L 4u(a,b) —u(a,b—h) —u(a,b+a)

h2

2D discretization We discretize —Au = f on a equidistant tensor-

product mesh of (0,1)? with meshwidth & such that u(ih, jh) = p; ;
for all 1 <4,j < N. This leads to the system

—Hi—1,4 — Mit1j 4G — Mig—1 — Mg+l

LSE of —Au = f using lexikographic ordering leads is Ay = ¢

T -I 0 ... 4

_ 1l 1T -
A= . :
0 - 0

FD and FE Galkerin Most finite difference schemes correspond
to FE Galerkin schemes with numerical quadrature on structured
meshes.

7.2 Finite Volume

Control volumes C; for i = 1,..., M are cells of a mesh M =
{C;} covering computational domain (). Associate with each cell
C; a nodal value p; such that p; ~ u(p;), where p; is the center of
C;.

Local numerical fluxes J; for two adjacent cells Cy, C; with
common edge I';; := C; N C}, is given by

Jir =¥ (i ;) %/ J-ny dS,
ik
where ¥ is the numerical flux function

FV LSE Is must hold that fC' fdz = fac.j -ndS

> = 3 M) = Cf ) = [ o vie1a

keUu; keUu;
where U; = {j : C; and C;j € M share common edge}

Voronoi dual mesh for V(M) = {py,...,py}, define the
Voronoi dual mesh M := {C;}};, where C; are the Voronoi cells

Ci={x€Q:|x—p| <|x—p;|IVj#i}. (Voronoi cells)

Voronoi cells are constructed by perpendicular bisectors for edges
and circumcenters of triangles for nodes.

Theorem 7.1 (Angle condition for Voronoi dual meshes)
The following angle conditions ensure that the Voronoi cells belong-
ing to adjacent nodes of a triangular mesh have a common edge
(CiNC; #0 < nodesi,j are connected by an edge of M):

(i) sum of angles facing interior edge < m,

(it) angles facing boundary edges < 7.

Definition 7.2 (Delaunay triangulation) are
meshes satisfying the angle conditions from theorem 7.1.

triangular

Barycentric dual mesh edges are the union of likes connecting
barycenters and midpoints of edges of M and nodes are barycenters
of triangles.

Definition 7.3 (Barycenter) of a triangle with vertices al, a2,
a® is the point p == %(a1 +a® +a%).

Neumann b.c. j-n = —h on 9Q)

Z WY(kis ) */

o=y GleRatile}

hdS = |Cilf(p;)

Dirichlet b.c. wu = 0 on Q) makes coefficients u; = 0 if py, € 9Q.
Keep only equations for p; where p; € Q.

Numerical flux

(ki 1) :=/ —grad Iy -ndS, Iu=Zujb§v
Tik :
J

FV equations for concrete numerical flux

Z / gradIu~ndS:,ui/ gradb§V~nidS+
Fik oC;

—Au(ih,jh) = 2 = f(ih,jh).
-1
Stencil notation for —A at point (ih,jh)is | -1 4 —1].
-1
Lexikographic ordering defines P —1)N+i ti; and

Q(j—1)N+i = f(ih, jh).

keUu;
L / gradbj vn»k.dS:/ fdx.
21D, [ eradbyon .

JEU; kel;



It follows that the matrix entry is A;; = — faci grad bgv -n; dS.

FV and FE Galerkin The FV discretization and the finite ele-
ment Galerking discretization spawn the same system matrix for the
model problem —Au =0 in ) and u = 0 on 9Q).

8 Convergence and Accuracy
8.1 Galerkin Error Estimate

Goal We would like to bound the en energy norm of the discretiza-
tion error ||u —uy||,. Energy norm, because the error in energy
|J(u) = J(un)| < 3|lu+un|,llu—un|, can be bounded with the
energy norm ||-||,.

Galerkin orthogonality for all wy € Vp n it holds that
a(u —un,wy) =0,

2 2 2
lu—wnllg = llu—unllzg + lluny —wn -

Theorem 8.1 (Cea’s lemma, Optimality of Galerkin sol.)
Assume that the bilinear form a : Vo x Vo — R is symmetric positive
definite, the right hand side functional | : Vo — R is continuous
with respect to the energy norm induced by a, and Vy equipped with
the energy norm |-||, is a Hilbert space. Then the energy norm of
the Galerkin discretization error satisfies

U—u = inf |Ju—v ,
lu=uxl, = inf fu—onl,
i.e. the discretization error of the Galerkin solution is the best ap-
proximation error in energy.
Refinement by increasing polynomial degree Sg (M) C Sngl (M)
(p-refinement) or mesh refinement (h-refinement).
8.2 A-priori FE Error Estimates

1D error estimate predicts algebraic convergence with rate 1

|w — IIU|H1([a,b]) < hM||UHHL2([a,b])'

Lemma 8.2 (Local interpolation error estimate) For any tri-
angle K and u € C?(K) the following holds

2 3 4 2 2
lu = ullza(r) < SR ID ull pllza ),

6
2 3 h’/\/l 2 2
lgrad(u — Iiu)||72 gy < 24 TK|? D ul| plI72 (k-

Shape regularity measure p = h%(/\fﬂ pi large <— K
“distorted” <= K has small angles. We define pyq := maxg pg.

Lemma 8.3 (Error estimate for p.w. linear interpolation)
For any uw € CQ(K) and 2D piecewise linear interpolation
I : CU(K) = 8Y(M) for a triangular mesh M, holds

3,2 2
llu— Nl g2y < \/;hK””D ullpllpe(x),

/3 2
||grad(u—]1u)|\Lz(K) < ﬂhMPMHHD u”FHLZ(K)

3
= ﬂhMPM|U|H2(Q)’

where haq denotes the mesh width and paq the shape regularity mea-
sure of M.

Definition 8.4 (Higher order Sobolev norms) The m-th or-
der Sobolev (semi-)norm m € IN for sufficiently smooth u : 3 — R
and m-th order Sobolev space are defined as

ulfmey == D |D*|* da

aeN? |al=m 0

e SIID DI AL

k=0 aeN?,|x|=k
H™(Q) = {v: Q= R |[v]| gm () < oo}

10

. a . alel
with DY = 52T oaTT
Theorem 8.5 (Sobolev embedding theorem) For m > % it
follows that H™(Q) C C°(Q)) and there exists C = C(Q) > 0

such that ||ul| o < Cllull gm (qy for all u € H™(Q).

8.3 General Approximation Error Estimates (for La-
grangian FE)

Theorem 8.6 (Lagrangian FE best approximation err. estim.)
Let Q) C ]Rd, d = 1,2,3, be a bounded polygon/ polyhedral domain
equipped with a mesh M consisting of simplices or parallelepipeds.
Then, for each k € R, it ezists a constant C > 0 depending only on

k and the shape regularity measure paq such that

) min{p+1,k}—1

. h
inf )||U—UN||H1(Q) <C (;}Vl

u :
i leal

for all u € H*(Q)).

Approximate gain of accuracy The number of unknowns can

be approximated by N := dim Sg (M) ~ h=dpd = (%)d, then

_ min{p+1,k}—1
lu—unll, <CN a el g ()-
Therefore, reducing the energy norm of the error by a factor p > 1

(cost) requires an approximate increase of the problem size by a
min{p+1,k}—1

factor p d (gain).

8.4 Elliptic Regularity Theory

Corners in the boundary are bad for u as they prevent u from
being in H2(Q) (or higher).

Theorem 8.7 (Smooth elliptic lifting theorem) If 9Q) is C°-
smooth, i.e. possesses a local parameterization by C™°-functions,
and o € C*(Q), and

e ifu e Hi(Q) and — div(o gradu) € H*(Q) then u € H*2(Q)
for any k € N,

e ifuec HY(Q), —div(o gradu) € H*(Q) and gradu-n =0 on
A then u € H* 2(Q) for any k € N.

Furthermore, for an u satisfying one of the above conditions, there
is a constant C' = C(k,Q, o) such that

il g2y < Clidiv(o gradu)l gy = CllFll e -

Theorem 8.8 (Corner singular function decomposition)

Let O C R? be a polygon with J corners ¢. Denote the polar
coordinates of the corner ¢ by (r;, ;) and the inner angle at the
corner ¢ by w;. Additionally, let f € H'(Q) with | € Ny and
1 # N\jp, — 1, where \;. are given by the singular exponents \;, = %7:

for k € N. Then u € Hé(ﬂ) with —Au = f in Q) can be decomposed

J
w=u’+ ¥(r) Y wasik(ri o), ik € R,
i—1 ik <l41

with regular part u® € HY2(Q), cut-off function ¥ € C°(R") such
that ¥ =1 in a neighborhood of 0, and corner singular functions
Nk €N = si(r,0) = 7% sin(Aiggp),
ik EN: si(r,0) = 7 (Inr) sin(A\igg).-
8.5 Variational Crimes

Acceptable variational crimes must not affect (type and rate) of
asymptotic convergence when solving a perturbed variational prob-
lem.

Numerical quadrature To archive [u —uyll; = O(h%,) at best,
quadrature rule of order 2 — 1 is sufficient for right-hand side func-
tional fn and bilinear form ap.

Boundary approximation If V) n = Sg (M), use boundary fit-
ting with polynomials of degree p.



8.6 Duality Techniques

We are now interested in the number F(u) for given functional F :
Vo — R.

Assumptions on output functional F' are linearity and contin-
uous with respect to the energy norm, i.e. there exists a constant
Cf > 0 such that |[F(v)| < C¢|lv||, for all v € Vj.

Output error can be bounded with the discretization error in
energy norm by using the assumptions

|F(u) = Fun)| = [F(u—un)| < Cllu —unll,-

Theorem 8.9 (Duality estimate for lin. functional output)
Define the dual solution gp € Vy to F as the solution of the dual
variational problem gp € Vy : a(v, gr) = F(v) for allv € Vy. Then

|F(u) = Flun)| < [lu—unll, inf |lgr —onll,-
vNEVO,N

Theorem 8.10 (Elliptic lifting theorem on convex domains)
If Q C R? convex, u € Hi(Q), and Au € L*(Q) then u € H*(Q).

Trick to deal with non-continuous functionals Consider the
non-continuous functional J(u) = fr_ kgradu-ndS. Define the

cut-off function ¥ € C°(Q) N H'(Q) such that ¥|r, = 1 and ¥|r, =
0. Define the continuous functional J*(u) = fQ x grad ugrad Ps:.
Then (using Green’s formula and the given problem) J(u) = J*(u)
for solutions of the problem.

Theorem 8.11 (Error estimate for p.w. linear interpolation)

For any uw € c? (QQ) and 2D piecewise linear interpolation
I : C°(Q) = SY(M) for a triangular mesh M holds

3
= Tyl 20y < \/;himD%nFan(m = O(h3a),

3 2
\/ g PmbadlI D7l plip2 () = O(hm).-

8.7 Discrete Maximum Principle

lgrad(u — )2 (q) <

Theorem 8.12 (Discrete Maximum Principle) For
u e C°(Q) N HY(Q) holds the mazimum principle
—div(k gradu) > 0 = min u(z) = minu(z)
€00 e
—div(k gradu) <0 = max u(z) = maxu(x)
z€0Q) €}

Averaging argument Consider —Au = 0 in ) and u = g on 9Q).
Then the coefficient recursion is given by

1
pij = 7 (Bim1 + pis1g + R g1+ page),

which is an average formula. If u;; is assumed to be maximal or
minimal, it follows that all coefficients are equal p;; = pit1,; =
Mi—1,j = ... and hence uy is constant, because averages are smaller
or equal than the maximal averaged over elements.

Angle conditions ensuring maximum principle are a+ 3 <
7, where a and 8 are opposite angles of two triangles connected by

an edge, and erv(M) by

8.8 Validation and Debugging of Finite Element
Codes

Model problem Let () C R? with d = 2,3and 90 =TpUT U
Tr. Seek u € H'(Q) such that v = g on I'p and

AuvdSz/fvdx—F/ hvdS
Q Tn

for all v € HrlD (Q) = {v € H'(Q) : v|r, = 0}. This problem has
Dirichlet b.c. on I'p, Neumann b.c. on I'y and Robin b.c. on I'g.

/ agrad ugrad u +fyuvdx—|—/
Q I'r

Method of manufactured solutions

11

(i)
(if)
(iii)

Pick a simple domain Q) (no boundary approximations).
Use coefficients «, v given by simple analytic formulas.

Pick u € C*°(Q) as an exact solution with simple analytic
formula (no polynomials) and set f, g, h accordingly.

(iv)
)
(vi)

Use code: solve manufactured BVP to get uy.
Use code to compute ||u — up|| with overkill quadrature.

Estimate rate of convergence and match with theoretical predic-
tions. In case of mismatch, simplify the problem, e.g. I'p = 9Q),
g=0,A=0,a=1,.. As a last resort, use u € Pp(]Rd), this
must give uy = u.

Direct testing of (bi-)linear forms
(i)
(if)

Use simple polynomial/ circular Q.

Choose w € C°°(Q) with simple analytic formula (no polyno-
mials).

Compute b(w,w) exactly.

Use code to compute b(Ipw, [pw) on sequence of meshes, where
Ipw is the interpolation on mesh nodes with coefficient vector
v. This should give

b(w,w) — vf Bru, = O(hY).
9 2nd-Order Linear Evolution Problems

Computational domain becomes () := O x (0,7) ¢ R4!

9.1 Parabolic
(IVBP)

Heat equation

8t/ pudx+/j-n:/ fdx V control volumes V'
14 14 |4

Initial-Boundary Value Problems

where p models the energy stored in V.

Boundary conditions Use the same spatial boundary conditions.
For temporal boundary condition, the only option is to specify the
initial value u(z,0) = ug(x)

IBVP
¢ (pu) —div(kgradu) = f

u(x,t) = g(x,t)
u(x,0) = up(x)

in Q) :=0Qx(0,7T)
for (x,t) € 02 x (0,T)
for all x € O

Spatial variational formulation fort € (0,7) — u(t) € Vo

Om(u(t),v) +a(u(t),v) =1t)(v) Yv eV
u(()) =ug €V

Theorem 9.1 (Decay of solution of parabolic evolutions)
For f =0, the solution u(t) satisfies

—~t -t
1wl < € lluolly, — Nu®lla < e lluolly, VE€ (0,7).

Parabolic evolutions dissipate energy Without excitation, ex-
ponential decay of energy during parabolic evolution.

Spatial semi-discretization by method of lines (MOL) Re-
place Vp with finite dimensional Vj y and introduce basis B =

L, ...,
lution is given by uy (t) = Zf\il i ()b with time dependent coef-
ficients p; : [0, 7] — R.

Method of lines ODE
MOou(t) + Au(t) = o(t)
1(0) = po

b%} C Vp independent of time. The time dependent so-

forO<t<T,



ODE Find u : I ¢ R — RY such that u(t) = f(t,u(t)) with
£f: I xRY 5 RN Lipschitz continuous.

Evolution operator

@: 1 xIxRY SRY : (tg,t,u0) = ®Ftug := D(tg, t,u0) := u(t)

where u = f(¢,u), u(ty) =up

Properties of evolution operator

For fixed to € I and up € RY the so-called trajectory t — @
supplies the solution for the initial value problem.

For fixed s,¢ € I the mapping u — ®%'u is bijective and in
terms of self-mappings of RY we have ®V! = Id|g~ for all
t €l and ®5" 0 ®™t = &> for all s,7,t € I.

Recover ODE by 0:®(to,t,u) = f(t,D(to,t,u)).

Definition 9.2 (Discrete evolution operator) belonging to an
ODE on I x RY ia a mapping ¥ @ I X I X RY = RY such that
foralltel and u e RN

3g€No,70>0: ¥ Tu— ") < O, u)r?™ Vir| < 70,

with C = C(t,u) depending on t and u continuously. The largest
possible q is called the order of the discrete evolution.

Simple single step methods (SSM)

Explicit Euler ¥Y%""u = u + 7f(t,u) of order 1
Implicit Euler ¥&*"7u = u + 7f(¢, ¥%'""u) of order 1

1

tt+7 1
¥ 2

. u=w,w=u+7f(t+ i1, 3(w+

Implicit Midpoint
u)) of order 2

Theorem 9.3 (Order ¢ = rate q) Let ul?) € RY, j
1,..., M be a sequence of pointwise approximations of the solution
of the initial value problem u(t) = f(t,u(t)) for all t € I and
u(tp) = up on a time interval [to, T| with fized final time T > to
generated by a single step method of order ¢ € IN on a temporal mesh
to<ty<..<ty=T. Iffe CTYI xRY), then

yeee

vfmaxMHu(]) —u(t;)]| < Cr?

for T =max;j_1  alt; —tj_1] with C > 0 independent of t;.

Collocation SSM provide a general recipe for building discrete
evolutions. The idea is to use polynomial approximation on [t, ¢ + 7]
such that the ODE is solved at isolated points.

Theorem 9.4 (Order of collocation SSN) Provided that f] €
CP(I x RYN), the order of an s-stage collocation single step method
agrees with the order of the quadrature on [0,1] with nodes cj and
weights bj for j =1,...,s.

Definition 9.5 (General Runge-Kutta method) For
cients bj,a;; € R, ¢; = Z;Zlaij, i, = 1,...,8, s € N, the

discrete evolution Y5 of an s-stage Runge Kutta single step method
(RK-SSM) for the ODE i = f(t, u), is defined by

S S
ki = fit+oimutTy aiky), YTu=ut7) bik,
j=1 i=1
i=1,...,s. The k; € Vi are called increments.

Notation for RK-SSM U;; = a;;

2
b

C

Time stepping for MOL ODE We set t; := j7

coeffi-

12

« Explicit Euler pU) = 0~ +7‘M71(g0(tj,1) - Ay,(jfl))
« Implicit Euler pl¥) = (M +TA)_1(Mu(j_1) +7p(t5))

« General RK-SSM p U+ = ;,0) 4 Ty | Kmbm with coef-

ficient vector x; € RY satisfying the linear system of equations

1,...

S
Mk; + Z TaimAkm = @(tj +¢T) — Apl) = )8
m=1
K1 o(t; +car) — Apl)
— (LoM+TURA) :

Ks ga(tj +Cs7') —A/.L(j)
Stability analysis based on diagonalization Diagonalization
of MOL-ODE leads to equations of the form 7;(t) = —\;n;(t) with
eigenvectors A; > 0

Stability
o Explicit Euler is stable for [1 —7X;| <1 <= 7 < %
e Implicit Euler is unconditionally stable limy,— oo m(n) =0, i.e.
for all 7 > 0. The (theoretical) constraints are |ﬁ| <1 and

A > 0.

RK-SSM are stable for |S(z)| < 1 for all z < 0, where S is the
stability function with 1 = (1,...,1)7 € R®

det(I—2U + 21B7)

S(z) =14zb(IT—2U)" "1 = ot )

Unconditional stability of SSM The discrete evolution ¥} :
R — R of the single step method applied to the scalar ODE & = —Au
must satisfy

A>0 = lim (Y3)"ugo =0 Vug € R,Vr > 0.

n—oo

(9.1)

Theorem 9.6 (Behavior of generalized eigenvalues) Let M
be a simplicial mesh and A, M denote the Galerkin matrices for
the bilinear forms a(u,v) = [, VuVvdz and m(u,v) = [, uvde,
respectively, and Vo N := 3270 (M). Then the smallest and largest
generalized eigenvectors Au = AMpu, denoted by Apmin and Amaz
satisfy

1

—2
diam(QY) < Amin <C , Chiyy < Amagz,

where the “generic constants” depend only on the polynomial degree
p, the domain Q) and the shape reqularity measure p p .

Definition 9.7 (L(w)-stability) A  Runge-Kutta  single-step
method satisfying 9.1 is called L(r)-stable if its stability function
S(z) satisfies

(i) |S(z)| <1 for all z <0, and
(i5) 7S(—00)” :=lim,eRr 00 S(2) = 0.
L(rw)-stable 2-stage RK-SSM

15 1 N
3] 12 12
3 1 _ 1
1| 3 1 LI1=XA A A=1-3V2
g 1 I—-Xx A
RADAU-3 scheme (order 3) SDIRK-2 scheme (order 2)

Meta-Theorem 9.1 (Total err = spatial err + temporal err)
Assume that

the solution of the parabolic IBVP is "sufficiently smooth” (both
in space and time),

its spacial Galerkin finite element discretization relies on the
degree p Lagrangian finite elements on uniformly shape-reqular
families of meshes,



e timestepping is baed on an L(r)-stable single step method of
order q with uniform timestep T > 0.

The we can expect an asymptotic behavior of the total discretization
error according to

1/2

M
TZ|u—uN(7'j)\12ql(Q) < (W, + 1),
j=1

where C' < 0 must not depend on haq and 7.

Reduction of error Assuming sharp estimates, spatial and tem-
poral resolution have to be adjusted in tandem to archive an error
reduction.

Potential inefficiency of conditionally stable SSM In order
to reduce the error by a fixed factor p,

e accuracy requires reduction of 7 by a factor pl/ q

« stability requires reduction of T by a factor (pl/p)2 = p?/p.

2

For % <5 = 2q > p, stability enforces smaller timestep than

required by accuracy and renders timestepping inefficient.
9.2 Linear Wave Equation

Homogeneous linear wave equation in spatial variational form

ueV(t): /p@?uvder/JVqudx:O Yo € Hj (Q)
QO @)

weV(t): mli,v)+alu,v) =0 Yoe Hj(Q),
where V(t) = {v :
00,0<t<T}.

Rewriting 2nd order ODEs @ = g(t, w)

function v as 1 = <l;)) = (g(t?w)) = f(¢t,u).

Initial conditions Boundary conditions are nothing new. For
initial conditions we need u(x,0) = up(x) and u(x,0) = vo(x) for
x e Q.

(0,T) - HY(Q) : v(x,t) = g(x,t) for x €

by introducing new

d’Alembert solution for the Cauchy problem afu = 2o%u
on R x [0,1] is given by u(z,t) = F(uo(z + ct) + ug(x — ct)) +

1 prxtct
9 fz—ct vo(s) ds.

Theorem 9.8 (Domain of dependence for isotropic wave eqn)

Let @ : Q0 — R be a classical solution of 8252 = cAu. Then
(le— 29| > R = u(x,0) =0,0:u(x,0) =0) = u(x,t) =0,
if |¢— x| > R+ ct.
Discretized energies
« Kinetic energy %m(u,u) = %,uTMﬂ
+ Elastic energy sa(u,u) = iu” Ap
¢ Potential energy %ﬁTAﬁ 7?7 TODO

Theorem 9.9 (Energy conservation in wave propagation)
If u : O — R solves m(i,v) + a(u,v) = 0, then we have
conservation of energy in the sense that

t— %m(u,u) + %a(u,u) = const.

Method of lines ODE

Mo u(t) + Au(t) = o(t) for0<t<T,
<l\ﬁIL1(/t()t)> = <—Z(;)(t)> with p(0) = po,v(0) = vo.

Discrete conservation of energy

(YT AL 4 (TN 0 —
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(T ALY 4 (=) T (1)

Conservation of energy for SSM Explicit and implicit Euler do
not conserve energy, implicit midpoint rule exhibits perfect energy
conservation. Leapfrog method does almost conserve energy.

Crank-Nicolson timestepping is the energy conversing 2nd-
order method for the problem MatT/L +Ap=¢

(3+1) _9,,4) (G-1)
M 2p +

= A(M(jfl)u(j-*-l))

+

N = N

1 1
(plt = 37) + ol + 57))
forj=1,2,....

Stormer-Verlet timestepping is the 2nd-order method for the
homogeneous problem MOtT nw+Ap=0

(G+1) _ 9, (3-1) .
M 2u2 +u — A

T

) (-1

(1
for j = 1,2,... and with special initial step ”T = 19.

Leapfrog timestepping is the first-order form of the Stérmer

scheme
i+ L i1
MZ,(J 3) _0-3) _ —Au(j)
T
plt — ,0) _ +h)
T
1 1
for j = 0,1,... and with initial step v(=2) 4 (3) = 2ug.

Mass lumping replaces M with a diagonal matrix. For linear La-

grangian FE by using vertex-based quadrature formula f of (x)dx =~
|K|

V] Lpev(x) /(P)-

Stability, CFL-condition Crank-Nicolson timestepping is uncon-

ditionally stable, Leapfrog timestepping is only conditionally stable

with condition 7 < \/%, which because max; \; = (’)(hﬁ) implies
the CLF condition
7 < Chpm. (CLF-condition)

Leapfrog timestep constraint is okay The leapfrog timestep
constraint 7 < O(h ) does not compromise (asymptotic) efficiency,
if p > 2, where p is the degree of spatial Lagrangian finite elements.

CLF and domain of dependence CLF-condition <= analyti-
cal domain of dependence C numerical domain of dependence

Leapfrog vs. Crank-Nicolson Given the possibility of mass
lumping, the computational effort for leapfrog timestepping becomes
substantially smaller than that for the Crank-Nicolson scheme, be-
cause the latter will always involve the solution of a IV x N sparse
linear system of equations.

10 Convection-Diffusion Problems
10.1 Heat Conduction in a Fluid
Flow field v: Q — R% on bounded domain Q c R?.

Assumptions We assume that v € (C°(Q))? and no inflow or
outflow, i.e. v(x) -n(x) =0 forall x € Q

Flow map is the evolution operator ® : R x QO — Q : (¢,x0)
y(t) for the flow equation y¥ = v(y). Notation is ®'x = ®(t,x) =
oVix.

Fourier’s law in moving fluids

j(x) = —k(x) grad u(x) + v(x)pu(x), x €

Convection diffusion equation Together with divj = f this

corresponds to the linear scalar convection diffusion equation

—div(kgradu) + div(pvu)
—_— ———

2nd order diffusive term  1st order convective term



Incompressible fluids preserve the volumes, i.e. vol(®'(V)) =
vol(V) for all t and V C Q.

Theorem 10.1 (Div-free velocity fields are incompressible)
A stationary fluid flow in Q is incompressible if and only if its
associated velocity field v satisfies divv = 0 everywhere in Q).

Convection diffusion equation for incompressible fluids sim-
plifies to

—kAu+pvgradu = f in Q.

Time-dependent convection diffusion equation and incom-
pressible fluids

At (pu) — div(k grad u) + div(pvu) = f in Q= Q x [0,T).

10.2 Stationary Convection-Diffusion Problem

Model problem

—eAu+vgradu = f in Q.

Bilinear form
a(u,w) = e/ Vqudx+/ vVuwdx
Q Q

is not symmetric, but well defined on H&(Q) and positive definite,
because a(w,w) = 6||Vw\|%2(0) > 0 for w # 0.

Singular perturbed problem is a boundary value problem de-
pending on parameter € &~ ¢g for which the limit of the problem for
€ — go is not compatible with the boundary conditions.

Limiting case ¢ =0 (i.e. the problem vgradu = f) is solved by

t
u(y(1)) = u(y(0)) + / F(y(s).t)ds.

We choose y(0) on Q) where u is known.

Problem for ¢ =0 For the pure transport problem vgradu = f
Dirichlet boundary conditions can be imposed only on the inflow
boundary I';,, but not on its complement in 9Q), the outflow bound-
ary, given by

[ ={x€0Q:v(x) n(x) <0},
Tout = {x € 0 : v(x) - n(x) > 0}.

e-robust numerical methods
maximum principle.

are those satisfying the discrete

Sign conditions for maximum principle
e positive diagonal entries A;; > 0,
» mnon-positive off-diagonal entries A;; < 0 for i # j
« diagonal dominance Z]‘ A;; >0

Flow information The direction of the flow field v : O — R"
determines the direction of flow of information.

Even/odd decoupling For ¢ — 0, the discretization becomes
Wij+1 — pj—1 = hf(hj). Even/odd decoupling leads to a singular
system matrix.

Forward vs. backward difference quotients

e Linear system arising from use of backward difference quotient
(implicit Euler) results in good solutions, because sign condi-
tions are always fulfilled.

14

e Linear system arising from use of forward difference quotient
(explicit Euler) results in bad solutions, because of strong re-
strictions (% < 1) ensuring the sign conditions hold.

Upwind quadrature
Ozun (jh) as

uses upwind information to evaluate

Ozu(jh) : = (%i_r)IbaxuN(jh —9)

v(p)graduy(p) : = g;rrb v(p)graduy (p — 6v(p))

M—-1

1D upwind contribution fol =1 1105 bYy da = plifiot

Upwind quadrature fulfills sign conditions and thus respects
the maximum principle.

Upwind quadrature is 1st-order |u—uy|l;2(q) = O(h)

Artificial diffusion
of diffusion

is upwinding by h-dependent strengthening

—Hi—1 t Hit1
2h

—Mi—1 + 205 — pit1

(e+h/2) 2

+

= f(ih)

Smearing of internal layers happens if too much artificial diffu-
sion has been added to the problem. This might lead to a perturbed
solution.

Heuristics of streamline upwinding Since the solution is
smooth along streamlines, then adding diffusion in the direction of
streamlines cannot do much harm.

Anisotropic artificial diffusion
e+ el+ 6KVKV£ € 11{2’27

where v is the local velocity and dx is a method parameter con-
trolling the strength of anisotropic diffusion.

Anisotropic variational problem Seck u € H'(Q) such that

/ eVuVw + (vVu)w dx+
Q

Z oK /K(feAu—l—vVuff)(VVw) dx:/

KeM 0

fwdx

for all w € H} (Q).

vz WMt
Choice of 6 0 = € hx o 2 <1
hk e

Streamline and maximum principle Streamline diffusion does
not strictly respect the maximum principle

Streamline diffusion is 2nd-order |u— u%’HLz(Q) = O(h?)

Meta-Theorem 10.1 No e-robust linear method that respects the
mazimum principle strictly can be more than 1st-order convergent
in L2
10.3 Transient Convection-Diffusion IBVP
Transient convection-diffusion problem

At (pu) + div(—xVu + pvu) = f(x,t) in Q

with boundary and initial conditions, for example u(x,t) = g(x, )
for x € 9Q and u(x,0) = ug(x) for x € Q.

Fluid velocity becomes v:Q — R?:v = v(x,1).
Incompressible transient convection-diffusion

du—eAu+v(x,t)Vu=f in Q
MOL approach

M+ eAp+B(t)u = o(t)



Spacial discretization for method of lines approach to singularly
perturbed transient convection-diffusion IBVPs use e-robustly stable
spatial discretization of convective term. The prize one has to pay
are spurious damping or smearing due to artificial diffusion.

Temporal discretization use L(m)-stable timestepping methods.
The prize is even more artificial diffusion.

Pure transport equation
problem

is the singular perturbed (¢ — 0)
du+v(x,t)Vu=0 in Q

Solution for pure transport equation

u(x,t) = {

Vso < s <t for (x,t) € O with u(x,t) = g(x,t) on T;,.

uo(xo) + [y f(y(s),s)ds y(s) eQV0< s <t
9(y(s0),50) + [, f(y(s),5)ds y(s0) € 9, y(s) € O

Lagrangian split-step method separates the convection-
diffusion equation into pure transport and pure diffusion and solves
the problems separately.

du=ceAu+ f—vVu < y=g(y)+h(y)

where g(y) = eAu(y), h(y) = f(y) — v(y)Vu(y)

Strang splitting is a single-step method that computes y(j) RS
y(t;) from yU= ~ y(tj—1) according to

(i) ¥ == z(tj_1 + 37), where z(t) solves z
y=1

(i) § :=w(t;), where w(t) solves w = h(t,w), w(t;—1) =¥,

g(t, Z), Z(tj_l)

(iii) y) = z(t;), where z(t) solves z = g(t,2), z(tj_1 + 37) = ¥.

Theorem 10.2 (Strang splitting is 2nd-order) Assuming
exact solutions of the initial value problems of the sub-steps, the
Strang splitting single step method is of second order.

Particle method for pure transport

(i) Pick suitable interpolation nodes pq,...,py € O

(ii) Particle pushing: solve N initial value problems y = v(y(t),t)
with y(0) = p; for particle trajectories by means of a suitable
single-step method with uniform timestep 7 = T/M, M € N

() for j =1,..., M,

to create a sequence of solution points p;

i=1,...,N.

(iii) Reconstruct approximation u%) =~ u(~,tj)7 t; = j7 by interpo-
lation. We demand fori=1,..., N

O] )

4

-1
"‘FPE ) tp+ti—1
2

2

W

j—1
j P
(pﬁj))zuo(pi)JrTZf( :
=1
Particle mesh method (PMM)
(i) MOL half step
(ii) Particle method described above
)
(iv) Repeat first step on M; with particle temperatures defining
initial finite element function

(iil) Remeshing: M with nodes at new particle positions

Problems with PMM Bas meshes, remesing is expensive, re-
assembly of A and M necessary, but as a benefit no artificial diffu-
sion.

Material derivative

Df

s f(l’,t)—f( (t_7)7t_7-)
Du(m,t)fhm Y

T—0 T

=V f(z,t)v(z,t) + 0z, t)
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Convection diffusion eqn with material derivative becomes

in O

Semi-Lagrangian method discretized the material derivative B—i.

W) e 89 4(M)

The resulting problem becomes seek u

J

)

) () — ud~D

N
T

(q)t’tjiTX)

(x)

Vu%) Von dx

UN(x)dere/

Q

= / f(X, tj)vN(x) dx
(@)

for all vy € S?,O(M)-

Approximations of ® Replace x +— u%_l)(¢tj’tf7Tx) with
its p.w. linear interpolant and use explicit Euler to approximate
@'l x — v(x,t)7 (streamline backtracking).

/u?@%Jﬂ
(0]

(G-1)
N

(=7v(t))(x)

. vy (x)dx

+8/Vu
Q

)

NVUNdx:/f(x,tj)vN(x)dx
Q



Part 111

Implementation

16



11

Mesh

11.1 Initialization

Types

using grid_t = volume2dGrid: :hybrid: :Grid;

using eth::grid::GridViewTypes view = eth::grid::GridViewTypes::LeafView;

using gridView_t = typename eth::grid::GridView<grid_t::gridTraits_t::template viewTraits_t<view>>;
// the basic grid information is encoded in the grid traits

using gridTraits_t = gridView_t::gridTraits_t;

using gridCreator_t = GridCreator<grid_t,view>;

using gridFactory_t = gridCreator_t::gridFactory_t;

using itsct_t = eth::grid::Intersection<betl2:: volume2dGrid: :hybrid: :GridTraits>;

Initialize grid

const std::string basename = "./hex" + std::to_string(5);
betl2: :input: :gmsh: :Input input(basename);

Create surface grid

const gridFactory_t gridFactory = gridCreator_t() (input);
const gridView_t gridView = gridFactory.getView();

11.2 Accessing geometric Information

Geometry object has the following types and methods

Constant dimFrom telling the dimension of the reference element

Constant dimTo, the dimension of the ambient space

Type gridTraits_t of the GridTraits of the mesh of which the entity is part of

Vector type globalCoord_t for the absolute coordinates of points in ambient space

Vector type localCoord_t for relative coordinates in a reference element

Integer type size_type for indices

Method size_type numCorners() telling the number of vertices of the entity

Method globalCoord_t mapCorner (int i) returning the global coordinates of the vertices of the geometric entity
Method gridTraits_t::ctype_t volume() telling the volume/ area of the geometric entity

Method globalCoord_t center() obtaining the global coordinates of the center of gravity of the geometric entity

integration element?

Access to geometry object through fespace element by calling element->geometry()

Geometric entity object provides the following methods

Fo

1

refE1Type () provides information about the geometric type of the mesh entity or, more precisely, about the underlying reference
element. The following are available POINT, SEGMENT, TRIA, QUAD, TETRA, HEXA, PRISM, PYRAMID and can be accessed through
using triangle_t = eth::base::RefElType::TRIA;.

geometry () returns a (constant) reference to the geometric information attached to the entity.
entities with codimension 0, the following methods are available in addition
int countSubEntities<codim>() returns the number of entities of co-dimension codim contained in the boundary of the cell.

EntityPtr subEntity<codim>(int locidx) returns a pointer to the entity with local number locidx and c-dimension codim contained
in the boundary of the cell.

11.3 Numbering
Index set object indexSetRef_t set(gv.indexSet()) provides the following methods

index_t index(const Entity &) const returns the unique index (actually an integer) of any entity passed to it.

template <CODIM> index_t subIndex(const Entity<GRID_TRAITS,0> &element,size_type locidx), a shortcut to access indices
of sub-entities with co-dimension 0 (equivalent to calling set.index(T.template subEntity<codim>(locidx)))

11.4 Looping through Grid

Loop over elements in FESpace

// alternative 1
// loop over all elements in fespace of codimension 0, t.e. cells
for (auto const element& : fespace) {

}

// loop over local shape functions
for (auto index : fespace.indices(element)) {}

// alternative 2
for (auto el_it = fespace.begin(); el_it != fespace.end(); ++el_it) {

for (auto dof_it = fespace.begin(xel_it); dof_it != fespace.end(*el_it); ++dof_it)
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auto locIdx = fespace.locallndex (dof_it, *el_it);
auto glbIdx = fespace.globalIndex(dof_it);
}
}
// alternative 3
for (const auto element& : gridView.template entities<0>()) {}

wie konnte ich hier mit diesem index ein element abfragen?

11.5 Intersections
Intersection object provides the following methods
e bool boundary() if false, no other neighbor exists
e bool neighbor() true if a neighbor cell exists
o geometry() geometry of intersection object
e inside() return pointer to "master element”
e outside() returns pointer to neighbor element; well defined value only if this exists
e indexInInside() local number of edge corresponding to intersection object in "master element”

e indexInOutside() local number of edge corresponding to intersection object in neighboring element; well defined return value only if
this exists

Basic loop over intersections

for (const auto& el : gridView.template entities<0>()) {
for (const auto& inters: gridView.intersections(el)) {
const auto& inter = *inters;
const auto& geom = inter.geometry();
const unsigned int locEdgeld = inter.indexInInside();

}
}

Loop over all boundary edges

#include <iostream>

using itsct_t = eth::grid::Intersection<betl2::volume2dGrid:: hybrid: :GridTraits>;

std::vector<const itsct_t*> boundary_inters;

for (const auto& el:gridView.template entities<0>()) {
for (const auto& inters: gridView.intersections(el)) {

if (inters.boundary())
boundary_inters.push(&inters);

}

}

for (const auto& inters: boundary_inters) {
const auto& el = inters->inside(); // master element
const auto& geom = inters->geometry();

}

12 Basis and Dof Handler
Definition of FEBasisType

// APPROX_ORDER = {Constant, Linear, Quadratic, Cubiclt
// FEBasisType = Lagrange
template<int APPROX_ORDER,enum FEBasisType FE_TYPE> class FEBasis;

Dof handler

// fe::FESContinuity = fe::FESContinuity::Continuous
fe::DofHandler<fe: :FEBasisType, fe::FESContinuity, eth::grids::utils::GridViewFactory>;

Example initialization

// define a constant linear finite element basis

using febasis_t = fe::FEBasis<fe::Linear, fe::FEBasisType: :Lagrange>;

// define dofhandler type for linear basis functions

using dofHandler_t = fe::DofHandler<febasis_t, fe::FESContinuity::Continuous, gridFactory_t>;
// instantiate dofhandler for the grid

dofHandler_t dh;

// distribute the degrees of freedom

dh.distributeDofs(gridFactory) ;

12.1 FESpace
FESpace provides the following member functions.

e begin() and end() return the constant iterator to the beginning and end of the container of cells, i.e. entities of codimension zero.
This enables foreach loops over fe: :FESpaces.
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begin(e) and end(e) take e, a constant reference to an entity of co-dimension zero (cell) and provide a constant iterator to the
beginning and end of the vector of dofs for the element/cell e.

dofsOnElements () returns a constant reference to the container of all dofs managed by the fe: :FESpace.
globalIndex(dIter) takes a constant dof iterator dlter and returns its global index.

localIndex(dIter,e) takes a constant dof iterator dlter and a constant ref- erence to an entity e of codimension zero and returns
the local index of the dof from dIter with respect to the cell e.

£ilter<CODIM>(e, intersectionIndex) takes e, a constant reference to an entity of codimension zero (cell) and an intersectionIndex
of the element (type int), referring to one of the elements intersections (sides). It returns a standard vector containing the local indices
(w.r.t. the cell e) of all dofs that are associated with entities of codimension CODIM contained in the intersection corresponding to
the intersectionIndex.

filterAll(e, intersectionIndex) takes e, a constant reference to an entity of codimension zero (cell) and an intersectionIndex of
the cell e (type int), referring to one of the elements intersections (sides). It returns a standard vector containing pointers to all dofs
that are associated with the side corresponding to the intersectionIndex.

filterIndices(e, intersectionIndex) takes e, a constant reference to an en- tity of codimension zero (cell) and an intersectionIndex
of the cell e (type int), referring to one of the elements intersections (sides). It returns a standard vector containing the local in- dices
(w.r.t. the cell ) of all dofs that are associated with the intersection corresponding to the intersectionIndex.

indices(e, intersectionIndex) takes e, a constant reference to an entity of codimension zero (cell) and an intersectionIndex of
the cell e (type int), referring to one of the elements intersections (sides). It returns a standard vector containing the local—global
index mappings (w.r.t. the intersection associated with the intersectionIndex) of all dofs that are associated with the intersection
corresponding to the intersectionIndex.

indices(e) takes e, a constant reference to an entity of codimension zero (cell), and provides a standard vector filled with its
local—global index mappings (as pairs of integer indices, see below).

numDofs () returns the global number of dofs.

numElements () returns the total number of elements.

FESpace elements? TODO that are being looped over also have some functions like calling geometry object, please explain here
TODO

Basis functions and their gradients

typename FEBASIS::template basisFunction_t<RET>;
typename FEBASIS::template diffBasisFunction_t<RET>;

provide the following types and functions

static const eth::base::RefElType refElType geometry type of element for which FEBasis was designed
static const int numFunction number of local shape functions

static const int functionDim number of vector components of return value

static const int localDim dimension of ambient space for reference element

using matrix_t

Eval( const matrix_t< localDim, NUM_POINTS > &) returns the evaluation for the local shape functions and for diffBasisFunction_t
returns the gradients of the local shape functions. It takes a matrix with point coordinates with respect to the reference element in
its columns. The number of columns has to be passed as a template parameter. It returns a matrix with a rows for each individual
local shape functions, with the result (vectors) of the evaluations in the passed points horizontally concatenated in each row.

Point evaluations

typedef fe::FEBasis< fe::Quadratic, fe::FEBasisType::Lagrange > gfebasis_t;

// get quadratic basis functions for reference triangle;

typedef typename qfebasis_t::template basisFunction_t< REtria> basisFuncts;

// evaluate them on quadrature points

const auto functEval = basisFuncts::Eval( xti );

// get the basis functions' gradients for reference triangle;

typedef typename qfebasis_t::template diffBasisFunction_t< REtria> basisFunctGrads;
// evaluate them on quadrature points

const auto gradEval = basisFunctGrads::Eval( xti );;

13 Local Computations and Assembly

Local stiffness matrix

const auto& geom = el.geometry();

auto elem_area = geom.volume();

result_t result;

// compute gradients

Eigen::MatrixXd grads(2,3);

grads << (geom.mapCorner(1l) - geom.mapCorner(2)),

(geom.mapCorner (2) - geom.mapCorner(0)),
(geom.mapCorner (0) - geom.mapCorner(1));

// compute stiffness local matriz
result = grads.transpose()*grads/(4.*elem_area);
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Local mass matrix

const auto& geom = el.geometry();

auto elem_area = geom.volume();

result_t result;

// compute mass local matriz
result.setConstant(elem_area/12.);

result += result.diagonal().asDiagonal();

NPDE local and global assemblers Global assemblers
e NPDE::GalerkinMatrixAssembler with function assembleMatrix( const FESPACE_TEST_T& fe_test, const FESPACE_TRIAL_T& fe_tria
e NPDE::LoadVectorAssembler with function assembleRhs(const FESPACE _TEST_T& fe_test, const BUILDER_DATA_T& data )
e NPDE: :IntersectionGalMatAsse
e NPDE::IntersectionLoadVectAsse
Local triangular assemblers

+ NPDE: :AnalyticStiffnessLocalAssembler corresponds to local bilinear form a(u,v) = [, VuVvdx

e NPDE::AnalyticMassLocalAssembler corresponds to local bilinear form a(u,v) = fK uv dx

+ NPDE: :LocalVectorAssembler corresponds to local linear form I(v) = [}, fvdx
NPDE stiffness assembly

typedef NPDE::AnalyticStiffnessLocalAssembler localAssembler_t;

// type taking care of assembly of Galerkin matriz

typedef NPDE::GalerkinMatrixAssembler< localAssembler_t > assembler_t;

// instantiate corresponding object

assembler_t Ah;

// compute the Galerkin stiffness matriz in Eigen sparse matriz CRS format
typedef double numeric_t;

typedef Eigen::SparseMatrix< numeric_t > sparseMatrix_t;

const sparseMatrix_t& A = Ah.assembleMatrix( fespace, fespace, 1.0 );

14 Quadrature

Quadrature class template<enum eth::base::RefE1Type RET, eth::base::signed_tNUM_POINTS> class Quadrature provides the
following member functions

e getNumPoints () return the number p of quadrature points (NUM_POINTS).
e getRefE1() returns the reference element type (RET).

e getPoints() returns an object of type Eigen: :Matrix<refE1Dim, NUM_POINTS> containing the local coordinates of the quadrature
nodes as columns, refE1Dim is the dimension of the reference element.

e getWeights() returns an object of type Eigen: :Matrix<1, NUM_POINTS> containing the quadrature weights.

e getScale() returns correction scaling factor o such that the sum of the quadrature weights multiplied with o is equal to the are of
the reference element, |K|. In other words, only after rescaling with o we get a valid quadrature formula on K.

e getRefDim() returns the dimension of the reference element, for instance 2 in the case of TRIA or QUAD.
Quadrature for 2D-element types

typedef QuadRule<eth::base::RefElType::TRIA, NT> tria_t;
typedef QuadRule<eth::base::RefElType::QUAD, NQ> quad_t;
typedef QuadRulelist<tria_t, quad_t> quadrules_t;

Reference type

using refEl_t = eth::base::RefElType;
static const refEl_t triaType = eth::base::RefElType::TRIA;
static const refEl_t quadType = eth::base::RefElType: :QUAD;

Basic idea of quadrature

result_t result;
// Define quadrature for triangles
using quadrule_t = betl2::quad::Quadrature< eth::base::RefE1Type:TRIA, 7>;
// get points and weights over reference triangle
const auto & wti = quadrule_t::getWeights()*quadrule_t::getScale();
const auto & xti = quadrule_t::getPoints();
// map quadrature points and weights to current triangle
for( int 1=0; 1 < xti.cols(); 1++) {
// evaluate function at current quadrature point
const double f_eval = f( xti.col(l) );
result += wti(1l) * f_eval;
}

return result;
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Basic idea of quadrature for transformed triangles

const auto& geom = el.geometry();
result_t result;
// Define quadrature for triangles
using quadrule_t = betl2::quad::Quadrature< eth::base::RefE1lType:TRIA, 7>;
// get points and weights over reference triangle
const auto & wti = quadrule_t::getWeights()*quadrule_t::getScale();
const auto & xti = quadrule_t::getPoints();
// get determinant of Jacobian of 'reference->actual’ element transformation
const auto detJi = geom.template integrationElement< quadrule_t::getNumPoints() >( xti );
// map quadrature points and weights to current triangle
const auto globwti = detJi.cwiseProduct( wti );
const auto& globxti = geom.global(xti);
for( int 1=0; 1 < xti.cols(); 1++) {
// evaluate function at current quadrature point
const double f_eval = f( globxti.col(l) );
result += globwti(l) * f_eval;
}

return result;
15 Boundary Information

16 Solving system
SparseLU

// define the (direct) solver

typedef Eigen::SparseLU< Eigen::SparseMatrix<numeric_t> > solver_t;
// instantiate the solver

solver_t solver;

// initialize it and solve

solver.compute( Ah );

Eigen::VectorXd sol = solver.solve( rhs );

17 Working with Solution
17.1 Graphing & Interpolation

Interpolating solution

typedef InterpolationGridFunction< gridFactory_t, typename dofHandler_t::fespace_t, double> interpGF_t;
// instantiation of ulN

interpGF_t uN(gridFactory, dh.fespace(), mu);

// Define vtu-ezporter

typedef vtu::Exporter< gridFactory_t > exporter_t;

// Instantiate vtu-ezporter with grid information and basename as the vtu-file name.

exporter_t exporter( gridFactory, basename );

// output the function ul under the name uh. We link ulN to the grid points by chosing

// vtu::Entity: :Point

exporter("uh", uN, vtu::Entity::Point);

Graphing TODO

17.2 Norms

Hl-norm

template<typename FESPACE_T, typename VECTOR_T>

static double Hinorm(FESPACE &fespace, VECTOR_T &mu) {
GalerkinMatrixAssembler <NPDE::AnalyticStiffnessLocalAssembler> Assembler;
Eigen: :SparseMatrix<double> A = Assembler.assemble Matrix(fespace, fespace, 1.0);
return sqrt(mu.transpose() * A * mu);

}

L2-norm

template<typename FESPACE_T, typename VECTOR_T>

static double L2norm(FESPACE &fespace, VECTOR_T &mu) {
GalerkinMatrixAssembler<NPDE: :AnalyticMassLocalAssembler> Assembler;
Eigen::SparseMatrix<double> A = Assembler.assemble Matrix(fespace, fespace, 1.0);
return sqrt(mu.transpose() * A * mu);

}
18 Example Codes
Initialize

// TYPES
using grid_t = volume2dGrid::hybrid: :Grid;
using eth::grid::GridViewTypes view = eth::grid::GridViewTypes::LeafView;
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using gridView_t = typename eth::grid::GridView<grid_t::gridTraits_t::template viewTraits_t<view>>;
// the basic grid information is encoded in the grid traits

using gridTraits_t = gridView_t::gridTraits_t;

using gridCreator_t = GridCreator<grid_t,view>;

using gridFactory_t = gridCreator_t::gridFactory_t;

using itsct_t = eth::grid::Intersection<betl2:: volume2dGrid: :hybrid: :GridTraits>;

// INITIALIZE GRID
const std::string basename = "./hex" + std::to_string(5);
betl2: :input: :gmsh::Input input(basename);

// CREATE SURFACE GRID
const gridFactory_t gridFactory = gridCreator_t() (input);
const gridView_t gridView = gridFactory.getView();

// DOF HANDLER

// define a constant linear finite element basis

using febasis_t = fe::FEBasis<fe::Linear, fe::FEBasisType::Lagrange>;
// define dofhandler type for linear bastis functions

using dofHandler_t = fe::DofHandler<febasis_t, fe::FESContinuity::Continuous, gridFactory_t>;
// instantiate dofhandler for the grid

dofHandler_t dh;

// distribute the degrees of freedom

dh.distributeDofs(gridFactory) ;

// solve Finite Element system

auto mu = solveImpedanceBVP(dh.fespace(), gridView, boundary_inters);

Solve

template <typename LINFESPACE, typename INTERS>
Eigen::VectorXd solveImpedanceBVP(const LINFESPACE& fes, const gridView_t& gv, const INTERSZ boundary_inters)
{
// ASSEMBLE RHS VECTOR
// Define the source function g = 1
const auto f = [](const coords_t& x){ return std::cos(x.norm()); I};
// type computing local intersection vectors
typedef NPDE::LocalVectorAssembler trapLocFunAssembler_t;
// type in charge of computing the right hand side vector using load vector assembler
typedef NPDE::LoadVectorAssembler< trapLocFunAssembler_t > linearForm_t;
// instantiate corresponding object
linearForm_t F;
// compute the global functional vector
const Eigen::VectorXd&% rhs = F.assembleRhs( fes, f );

// ASSEMBLE GALERKIN MATRIX

// type of objects computing element matriz

typedef NPDE::AnalyticStiffnessLocalAssembler LocalMatAssemblerl_t;

// type taking care of assembly of Galerkin matriz

typedef NPDE::GalerkinMatrixAssembler< LocalMatAssemblerl_t > GalMatA_t;

// instantiate corresponding object

GalMatA_t Al;

// compute the (big) Galerkin (stiffness) matriz in Eigen sparse matriz CRS format
auto A_trips = Al.assembleTripletMatrix( fes, fes, gv );

// Define the function gamma = 1 + "2

const auto gamma = [](const coords_t& x){ return 1.0; };

// type of objects computing intersection matriz

typedef NPDE::LaplRobinLocalMatrixAssembler LocalMatAssembler2_t;

// type taking care of assembly of additions to Galerkin matriz

typedef NPDE::IntersectionGalMatAsse< LocalMatAssembler2_t > GalMatA2_t;

// instantiate corresponding object

GalMatA2_t A2;

// compute the (big) Galerkin (stiffness) matriz in Eigen sparse matriz CRS format
const auto A2_trips = A2.assembleTripletMatrix( fes, fes, gamma, boundary_inters );

A_trips.insert( A_trips.end(), A2_trips.begin(), A2_trips.end() );
Eigen: :SparseMatrix<numeric_t> Ah(fes.numDofs(),fes.numDofs());
Ah.setFromTriplets (A_trips.begin(),A_trips.end());

// SOLVE

// define the (direct) solver

typedef Eigen::SparseLU< Eigen::SparseMatrix<numeric_t> > solver_t;
// instantiate the solver
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solver_t solver;

// initialize it and solve
solver.compute( Ah );

Eigen: :VectorXd sol = solver.solve( rhs );
return sol;

}
18.1 Quadrature in BETL

Quadrature over Segment

static const refEl_t RET = refEl_t::SEGMENT;
result_t result; result.setZero();

// Get element geometry

const auto& geom = ic.geometry();

// Define quadrature for edge (3-points)
using quadrature_t = betl2::quad::Quadrature<RET, 3>;
// get points and weights over reference edge
const auto & w_i = quadrature_t::getWeights() * quadrature_t::getScale();
const auto & x_i = quadrature_t::getPoints();
// get determinant of Jacobian of ’reference->actual’ edge transformation
const auto detJ_i = geom.template integrationElement<3>(x_i);
// map quadrature points and weights to current edge
const auto globw_i = detJ_i.cwiseProduct(w_1i);
const auto& globx_i = geom.global(x_i);
// get quadratic basis functions for reference edge;
typedef fe::FEBasis< fe::Linear, fe::FEBasisType::Lagrange > febasis_t;
typedef typename febasis_t::template basisFunction_t<RET> basisFuncts;
// evaluate them on quadrature points
const auto functEval = basisFuncts::Eval(x_i);
// Loop over quadrature points
for (dnt i = 0; i < x_i.cols(); ++i) {
// evaluate coefficient function at current quadrature point
const double c_eval = c(globx_i.col(i));
// Fetch bastis functions evaluated at current quadrature point
const auto b_i = functEval.template block<2,1>(0,i);
// evaluate integrand of mass matriz for each 1j test/trial basis functions
result += globw_i(i) * b_i * c_eval * b_i.transpose();

return result;
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