
Numerical Methods for CSE

ETH Zurich

Janik Schuettler

HS17

Contents

Contents i

1 Computing with matrices and vectors 1
1.1 Numerics and Error analysis . 1
1.2 Computational effort and Cancellation . 2
1.3 Cancellation . 2
1.4 Numerical stability . 3

2 Direct Methods for Solving LSE 4
2.1 Solving LSE . 4
2.2 Exploiting structure when solving LSE . 4
2.3 Sparse linear Systems . 5

2.3.1 Sparse Matrix storage formats . 5
2.3.2 Direct solutions of sparse LSE . 6

3 Direct Methods for solving Least Square Problems 7
3.1 Least square solutions . 7

3.1.1 General solution and Moore-Penrose generalized inverse 8
3.2 Normal equation methods . 8
3.3 Orthogonal Transformation Methods . 9

3.3.1 QR-Decomposition . 9
3.4 Singular Value Decomposition . 10

3.4.1 Generalized solutions by SVD . 11
3.4.2 SVD-based optimization & approximation 11

3.5 Total least squares . 12
3.6 Constrained least squares . 12

4 Filtering Algorithms 13
4.1 Discrete Convolutions . 13
4.2 Discrete Fourier Transform (DFT) . 14

4.2.1 Discrete Convolution via DFT . 15
4.2.2 Fast Fourier Transform . 15
4.2.3 Frequency Filtering via DFT . 15
4.2.4 2D DFT . 16

5 Data Interpolation in 1D 17
5.1 Abstract Interpolation . 17
5.2 Piecewise linear Interpolation . 17
5.3 Global Polynomial Interpolation . 18

5.3.1 Lagrange Polynomials . 18
5.3.2 Barycentric interpolation approach . 19
5.3.3 Newton basis . 19
5.3.4 Update friendly schemes . 20

5.4 Splines . 21

i

Contents

5.4.1 Cubic spline interpolation . 21

6 Approximation of Functions in 1D 22
6.1 Taylor Approximation . 22
6.2 Bernstein Approximation . 22
6.3 Global polynomial Approximation Theory . 23
6.4 Lagrange Approximation . 24
6.5 Chebychev Approximation . 25
6.6 Piecewise polynomial Lagrange interpolation 27
6.7 Overview of estimates . 28

7 Numerical Quadrature 30
7.1 Quadrature Formulas . 30
7.2 Polynomial Quadrature Formulas . 30
7.3 Gauss Quadrature . 31
7.4 Composite Quadrature . 33

8 Iterative Methods for Non-Linear Systems of Equations 34
8.1 1D Iterative Methods . 34

8.1.1 Bisection . 34
8.1.2 Fixed Point iterations . 34
8.1.3 Algorithm for root-finding with quadratic convergence 35

8.2 Nonlinear systems of equations . 35
8.2.1 Fixed point iterations in Rn . 36

8.3 Newton’s method . 37
8.3.1 Stopping criterion for Newton’s method 37
8.3.2 Damped Newton method . 37
8.3.3 Quasi Newton method . 37

8.4 Unconstrained Optimization . 38
8.4.1 Optimization with differentiable objective function 39
8.4.2 Optimization with convex objective function 39
8.4.3 Methods in 1D . 39
8.4.4 Methods in higher Dimensions . 40

A Appendix 42
A.1 Polynomials . 42

ii

Chapter 1

Computing with matrices and vectors

1.1 Numerics and Error analysis

Computers can’t compute in R or C, instead in M, which is not closed under arithmetic
operations. Given a mapping op : M×M → R, the implementation on a computer is as
follows õp : M ×M → M : õp = rd ◦ op. In M, two variables a, b are called equal iff
|a− b| < ε, where ε is the machine precision.

Fixed point representation

Pro: Easy way of storing numbers, e.g. a + b = (a · 10k + b · 10k)10−k.

Con: Precision issues

Floating point representation (default)

Definition 1.1 Given a basis B ∈ N \ {1}, an exponent range {emin, ..., emax} ⊂ Z, and number
m ∈N of digits, the corresponding set of machine numbers is

M = {d · BE|d = i · B−m, i = Bm−1, . . . , Bm − 1, E ∈ {emin, . . . , emax}}.

There are 5 basic formats for floating point representation.

• 3 binary formats: binary32 (simple), binary64 (double), binary128 (quadruple),

• 2 decimal formats: decimal64 (double), decimal128 (quadruple).

Machine numbers are not evenly spread, gaps increase for larger numbers.

Definition 1.2 For ∈ K an approximation of x ∈ K, we define the absolute error and relative
error as

εabs = |x− x̃|, εrel =
|x− x̃|
|x| .

Approximation x̃ of x has l ∈ N0 correct digits if εrel ≤ 10−l . Machine precision is the
maximal relative error of rounding

EPS = max
x∈R

|rd(x)− x|
|x| .

Definition 1.3 (Axiom of roundoff analysis) There is a small positive number EPS, the ma-
chine precision, such that for the elementary arithmetic operations ∗ ∈ {+,−, ·, /} and ”hard-wired”
functions f ∈ {exp, sin, cos, log, ...} holds

x∗̃y = (x ∗ y)(1 + δ),

f̃ (x) = f (x)(1 + δ),

1

1.2. Computational effort and Cancellation

for all x, y ∈M with |δ| < EPS. Alternatively, EPS is the smallest possible positive number, such
that 1+̃EPS 6= 1.

Forward and backward error

Relative and absolute errors are in general not computable without knowing the exact
solution. One possible computation is the worst-case estimate. Suppose we want to solve
Axex = b for x, which gives the approximation xapp, such that Axapp = bapp.

• The forward error is defined as |xex − xapp|,

• the backward error is defined as |b− bapp|.

In practice we stop an approximation if the backward error is small. However, a small
backward error does not imply small forward error.

Dense Matrix Storage Formats

Matrices are stored as either row major (Python) or column major (MATLAB, Eigen) arrays,
indexing starts at 0. In Eigen it is therefore faster to access columns.

1.2 Computational effort and Cancellation

Computational effort is not runtime.

Definition 1.4 (Asymptotic complexity) The asymptotic complexity of an algorithm characterises
the worst-case dependence of its computational effort on one or more problem size parameter(s) when
these tend to infinity.

Implicit assumption: sharpness of O-bound, where sharpness means valid and provable.
Asymptotic complexity does not predict runtime, but the dependence of runtime on size of
the problem.

Cost of basic operations

operation mult/div add/sub asympt. complexity
dot product n n− 1 O(n)
tensor product nm 0 O(mn)
matrix product mnk mk(n− 1) O(mnk)

Some tricks to reduce complexity

Try to avoid operations of higher complexity, e.g. use vector products instead of matrix
products if possible. Examples: matrix multiplication, hidden summation, Kronecker prod-
uct

1.3 Cancellation

Cancellation occurs when subtracting two almost equal numbers, which can lead to an
amplification of the relative error.

Example 1.5 (Roots of quadratic polynomial) We want to stably compute the roots of a polyno-
mial p(ξ) = ξ2 + αξ + β.

2

1.4. Numerical stability

• Step 1: Compute first root ξ1 = − α
2 −

1
2

√
α2 − 4β (stable).

• Step 2: Use Vieta’s formula to compute the second root ξ2 = β
ξ1

(stable).

1.4 Numerical stability

Given a problem F : X → Y, we want to find an algorithm F̃ : X → Ỹ ⊂M to approximate
F.

Definition 1.6 (Stability) An algorithm F̃ for solving a problem F : X → Y is called numerically
(backward) stable if for all x ∈ X its results F̃(x) is the exact result for ”slightly perturbed” data,

∃C ≈ 1 : ∀x ∈ X, ∃x̃ ∈ X : ‖x− x̃‖X ≤ Cw(x)EPS‖x‖X ∧ F̃(x) = F(x̃),

where w(x) is the computational effort of the problem. F̃ is called mixed stable if an x̃ with
||x−x̃||
||x|| ≤ O(EPS) exists such that

‖F̃(x)− F(x̃)‖
‖F(x̃)‖ ≤ O(EPS).

Backward stability implies mixed stability.

Definition 1.7 The condition number of an algorithm F : X → Y is defined as

cF(x) = sup
∆x

(
‖F(x + ∆x)− F(x)‖/‖F(x)‖

‖∆x‖/‖x‖

)
.

The condition number for a matrix A is defined as

cA = ‖A‖‖A−1‖ = σmax

σmin
.

A problem is called well-conditioned if its condition number is small, otherwise it is called ill-
conditioned.

If the problem is well-conditioned, backward stability guarantees accurate results.

3

Chapter 2

Direct Methods for Solving LSE

We want to solve an LSE Ax = b for given A ∈ Kn,n, b ∈ Kn for x. Regularity of A ensures
existence and uniqueness of a solution x.

2.1 Solving LSE

Gauss elimination

The idea is to use Ax = b ⇐⇒ TA = Tb for T ∈ Kn,n regular.

Complexity The complexity of gauss elimination is O(n3). If the given matrix is triangular, the
complexity reduces to O(n2).

LU decomposition

The idea is to decompose A such that LU = PA, with L lower and U upper triangular and
P a permutation matrix. Then solve Ax = LUx = Lz = b for z and Ux = z for x.

Complexity The complexity of solving LSEs using LU decomposition is O(n3). However, solving
for N RHS, we archieve a complexity of O(n3 + Nn2) over O(Nn3) using Gauss elimination.

2.2 Exploiting structure when solving LSE

Block elimination

The idea is to rewrite(
A11 A12
A21 A22

)(
x1
x2

)
=

(
b1
b2

)
⇐⇒

(
Id 0
0 Id

)(
x1
x2

)
=

(
A−1

11 (b1 − A12x2)
S−1bs

)
,

with the Schur complement S = −A22 − A21A−1
11 A12 and bs = b2 − A21A−1

11 b1.

Good algorithm if A−1
11 can be easily computed. However, block elimination can suffer from

numerical instability. As a rule of thumb, block elimination is numerically stable for s.p.d.
matrices and for diagonally dominant matrices.

Block LU decomposition

Example 2.1 We can decompose a block matrix A into matrices L, U as

A =

(
R v
uT 0

)
=

(
Id 0

uTR−1 1

)(
R v
0 −uTR−1

)
= LU.

4

2.3. Sparse linear Systems

Solving Lz = b gives

Lz =

(
Id 0

uTR−1 1

)(
za
zb

)
=

(
z0

uTR−1za + zb

)
=

(
ba
bb

)
= b.

Therefore za = ba and zb = bb − uTR−1za.
Solving Ux = z gives

Ux =

(
R v
0 −uTR−1v

)(
xa
xb

)
=

(
Rxa + vxb
−uTR−1vzb

)
=

(
za
zb

)
= z.

If A is regular, then its Schur complement is non-zero, i.e. uTR−1 6= 0, and therefore xb = − xb
uT R−1v .

Subsequently, xa can be obtained by solving the LSE Rxa = za − vxb.

Low-rank modification of an LSE

Having solved Ax = b, then solve Ãx = b̃ with rank(A− Ã) small. Rank-1 modifications
can be decomposed into vectors Ã = A + uvT. The problem can be rewritten into the block
partitioned system (

A u
vT −1

)(
x̃
ξ

)
=

(
b
0

)
.

By using block elimination, we get x̃ = A−1(b− uξ) and ξ = vT A−1b
vT A−1u+1 and hence

x̃ = A−1b− A−1u
vT A−1b

1 + vT A−1u
,

where we have to solve for A−1b and A−1u.

Complexity Knowing the LU decomposition of A, solving for x̃ has complexity O(n2).

The following lemma generalizes this for rank-k perturbations.

Lemma 2.2 (Sherman-Morrison-Woodbury formula) For regular A ∈ Kn,n and U, V ∈ Kn,k, k ≤
n holds

(A + UVH)−1 = A−1 − A−1U(Id + VH A−1U)−1VH A−1,

if Id + VH A−1U is regular.

Note: System Id + VH A−1U is k× k and therefore small if k is small. If c(Id + VH A−1U) ≤
c(A) · (A + UVH) and the original and perturbed system are well-conditioned, then also
the k× k system is.

Complexity The factorization of UVH is of complexity O(nk2) if Ã− A has only a few nonzero
columns (or rows).

2.3 Sparse linear Systems

An m× n-matrix A is called sparse if the number of non-zero entries nnz(A)� mn.

2.3.1 Sparse Matrix storage formats

Our goal is to reduce the required memory to around the order of nnz(A).

5

2.3. Sparse linear Systems

Triplet matrices

Matrix stored as array of triples containing position i, j and a value. Format allows multiple
elements in array at same position in matrix. The convention is that the values of these
entries are added up.

CRS/CCS format

Matrix A stored as three contiguous arrays.

• val: stores values

• col ind: stores the column indices

• row ptr: stores the row pointer

Complexity The cost of inserting a new element into matrix A stored in CRS/CCS format is
O(nnz(A)).

Ways to efficiently initialize a sparsematrix:

• Use triplet format for initialization and then change to CRS/CCS format

• ”Reverse” enough space in each row for nonzero entries.

Complexity The cost of efficient sparse initialization is O(n) if nnz(A) = O(n).

2.3.2 Direct solutions of sparse LSE

Solvers like SparseLU exploit the sparsity of matrices.

Complexity The cost of sparse solvers roughly between O(nnz(A)3/2) and O(nnz(A)5/2).

6

Chapter 3

Direct Methods for solving Least
Square Problems

We want to estimate parameter. Suppose we have a model f (x) = a1x1 + ...+ anxn, f : Rn →
R and a series of measurements (x(k), y(k))n

k=1, x(k) ∈ Rn, y(k) ∈ R, where x(k) 7→ y(k) =

f (x(k)). Our goal is to estimate the parameters a1, ..., an with this series of experiments. We
can write the problem in matrix form

x(1)1 x(1)2 . . . x(1)n

x(2)1 x(2)2 . . . x(2)n
...

...
. . .

...
x(n)1 x(n)2 . . . x(n)n

a1

...
an

 =

y(1)
...

y(n)

and estimate parameters by solving XTa = y, which is linear regression. Due to measure-
ment errors, a large number of experiments and errors in our model, a solution to our
problem generally does not exist. We therefore want to approximate the solution such that
Ax ≈ b, which is equivalent to minimizing the norm of residual ||Ax− b||2. These solutions
are called least squares solutions.

3.1 Least square solutions

Definition 3.1 For given A ∈ Km,n, b ∈ Km the vector x ∈ Rn is a least squares solution of
the linear system of equations Ax = b if

x ∈ argminy∈Kn ||Ay− b||2 ⇐⇒ ||Ax− b|| = sup
y∈Kn
||Ay− b||2

If x ∈ lsq(A, b), then Ax is closest to B in Im(A), i.e. projection of b on Im(A).

Theorem 3.2 For any A ∈ Km,n, b ∈ Km a least squares solution of Ax = b exists.

Lemma 3.3 For any matrix A ∈ Km,n holds

ker(A) = Im(AH)⊥,

ker(A)⊥ = Im(AH).

Theorem 3.4 (Normal equation) The vector x ∈ Kn is least squares solution to the system Ax =
b, A ∈ Km,n, b ∈ Km if and only if it solves the normal equations

AT Ax = ATb.

7

3.2. Normal equation methods

Proof x ∈ lsq(A, b) ⇐⇒ Ax is closest element in Im(A) to b ⇐⇒ Ax − b ∈ Im(A)⊥ =
ker(AH) ⇐⇒ AT(Ax− b) = 0 �

Theorem 3.5 For Ax = b, A ∈ Km,n, m ≥ n, holds

Im(AT A) = Im(AT),

ker(AT A) = ker(A).

Corollary 3.6 If m ≥ n and ker(A) = {0}, then the linear system of equations Ax = b, A ∈
Km,n, b ∈ Km has a unique least squares solution

x = (AT A)−1ATb

that can be obtained by solving the normal equations.

Least squares solutions are only unique if they fulfill the full-rank condition.

3.1.1 General solution and Moore-Penrose generalized inverse

Definition 3.7 The generalized solution x† of a linear system of equations Ax = b, A ∈
Km,n, b ∈ Km is defined as

x† = argmin{||x||2 : x ∈ lsq(A, b)}.

Theorem 3.8 The generalized solution x† is unique.

Theorem 3.9 Given A ∈ Km,n, b ∈ Km, the generalized solution x† is defined by

x† = V(VT AT AV)−1(VT ATb),

where V is any matrix whose columns form a basis of Im(A)⊥. V(VT AT AV)−1VT is called the
Moore-Peurose pseudoinverse A† of A.

3.2 Normal equation methods

Algorithm using normal equation to solve full-rank least squares problem Ax = b

1. Compute regular matrix C = AT A O(mn2)

2. Compute RHS c = ATb O(nm)

3. Solve s.p.d. linear system of equations Cx = c O(n3)

Complexity The cost of solving a least squares problem using normal equation is O(n3 + mn2).

The condition number squares in the matrix multiplication AT A, i.e. cAT A = c2
a. It can

happen that AT A is not regular in M even if A is regular in M. Also, if A is sparse, AT A is
not necessarily sparse. Therefore, be careful when using normal equations.

Extended normal equation

Extended normal equations maintain sparsity and we can insert a regularization term for
better conditioning.

AH Ax = AHb ⇐⇒ B
(

r
x

)
=

(
−Id A
AH 0

)(
r
x

)
=

(
b
0

)
8

3.3. Orthogonal Transformation Methods

If A is sparse, then B is also sparse, but conditioning is not improved.

More generally, we set r = α−1(Ax− b) for some choice of parameter α > 0.

AH Ax = AHb ⇐⇒ Bα

(
r
x

)
=

(
−αId A
AH 0

)(
r
x

)
=

(
b
0

)
Good choice of α can give better cBff , hopefully cBff ≈ cA.

3.3 Orthogonal Transformation Methods

Consider least squares problem Ax = b, A ∈ Km,n, m � n with a full-rank A. The idea
is instead of solving Ax = b find an easier to solve system Ãx = b̃ such that lsq(Ã, b̃) =
lsq(A, b).

Theorem 3.10 A matrix is unitary/ orthogonal if and only if the associated linear mapping preserves
the 2-norm

Q ∈ Kn,nunitary ⇐⇒ ‖Qx‖2 = ‖x‖2, ∀x ∈ Kn.

If we can decompose A = QR with Q unitary/orthogonal and R triangular, the normal
equation becomes

AT Ax = ATb ⇐⇒ x = R−1QTb

This system is better conditioned with cR = cA.

3.3.1 QR-Decomposition

As a first approach we use Gram-Schmidt orthogonalization. In practice we multiple A by
upper-triangular matrices to obtain an orthogonal matrix Q = AT1T2 . . . Tn = AT. Since A
has full rank and each Ti also does, T is invertible. Let R = T−1, then A = QR.

Theorem 3.11 (QR-decomposition) For any matrix A ∈ Kn,k with rank(A) = k there exists

• a unique unitary matrix Q0 ∈ Kn,k that satisfies QH
0 Q0 = Q0QH

0 = Idk and a unique upper
triangular matrix R0 ∈ Kk,k with Ri,i > 0, ∀1 ≤ i ≤ k, such that

A = Q0R0,

the ”economical” QR-decomposition.

• a unitary matrix Q ∈ Kn,n and a unique upper triangular matrix R ∈ Kn,k with Ri,i >
0, ∀1 ≤ i ≤ n, such that

A = QR,

the full QR-decomposition.

Corollary 3.12 The economical QR-factorization of A ∈ Km,n, m ≥ n, with rank(A) = n is
unique if we demand (R0)i,i > 0.

Gram-Schmidt orthogonalization suffers from numerical instabilities due to possible cancel-
lation in subtraction and dividing by ≈ 0.

9

3.4. Singular Value Decomposition

Computation of QR decomposition (Householder reflections)

Thea idea is to find a series of orthogonal transformations, such that applied from the left
yield a triangular matrix Qn . . . Q2Q1A = R, similar to Gauss elimination, but now we use
orthogonal transformations. These transformations can only rotate and reflect vectors, i.e.
preserve length of and angles between vectors. Householder reflections use only reflection
represented as projections

Hva = −(a− 2projva) = −
(

Im − 2
vvT

vTv

)
a

The j-th step then tries to eliminate A’s j-th column aj = (aj
1 aj

2)
T by setting

vj =

(
0
aj

2

)
− cjej, with cj = ±‖a

j
1‖.

Then Hvj aj = (aj
1 0 . . . 0)T and Hvj qk = qk, where qk = Hvk ak for some k < j. Note that cj

must be chosen such that cancellation is avoided, i.e. if (0 aj
2)

T is almost parallel to the j-th
basis vector ej, choose cj such that vj is not small.

Altogether Hvn . . . Hv1 A = R, Q = HT
v1 HT

vn , then A = QR. Q is stored implicitly by storing
vectors v1, . . . , vn as lower triangular matrix (compressed format).

Complexity The computational effort for HouseholderQR() of A ∈ Km,n, m > n, is O(mn2) for
m, n→ ∞.

Givens rotations, an alternative QR factorization, use rotations instead of reflections for
building Q.

Normal equations vs orthogonal tranfsformation method

For least squares problems

use orthogonal methods expanded normal equations
if A ∈ Rm,n dense and n small A ∈ Rm,n dense and m, n big
because Superior numerical stability

of orthogonal transformations
methods

SVD/QR-factorization cannot
exploit sparsity

3.4 Singular Value Decomposition

Theorem 3.13 (SVD decomposition) For any matrix A ∈ Km,n there exist unitary matrices
Q ∈ Km,m, V ∈ Kn,n, and a (generalized) diagonal matrix Σ = diag(σ1, . . . , σp) ∈ Rm,n with
p = min(m, n) and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, such that

A = UΣVH.

Lemma 3.14 The squares σ2
i of the non-zero singular values of A are the non-zero eigenvalues of

AK A and AAH with associated eigenvectors (V):,1, . . . , (V):,p, (U):,1, . . . , (U):,p, respectively.

Lemma 3.15 If for some 1 ≤ r ≤ p = min{m, n}, the singular values of A ∈ Km,n satisfy
σ1 ≥ σ2, . . . , σr > σr+1 = . . . = σp = 0, then

10

3.4. Singular Value Decomposition

• rank(A) = r, (Σ encodes rank)

• ker(A) = span{(V):,r+1, . . . , (V):,n}, (V encodes nullspace)

• Im(A) = span{(U):,1, . . . , (V):,r}. (U encodes range)

Definition 3.16 The ”numerical rank” is computed as

r = #{σi||σi| ≥ tol ·max
j
{|σj|}},

for some tolerance tol. By default tol = EPS.

Complexity Cost of thin SVD is O(mn2), m > n.

JacobiSVD is numerically stable.

3.4.1 Generalized solutions by SVD

Theorem 3.17 If A ∈ Km,n has the SVD decomposition A = UΣVH in block matrix form

A =
(
U1 U2

) (Σr 0
0 0

)(
VH

1
VH

2

)
,

then its Moore-Penrose pseudoinverse is given by A† = V1Σ−1
r UH

1 .

3.4.2 SVD-based optimization & approximation

Norm constrained extrema

Given A ∈ Km,n, m ≥ n, find x ∈ Kn, ‖x‖2 = 1, such that ‖Ax‖2 → min.

Minimum for x = Ven = V:,n.

Best low-rank approximation

Definition 3.18 The Frobenius norm (or matrix norm) ‖·‖F of A ∈ Km,n is defined as

‖A‖2
F =

m

∑
i=1

n

∑
j=1
|ai,j|2 =

r

∑
j=1

σ2
j ,

with σi, 1 ≤ i ≤ r, r = rank(A), A’s singular values.

Given A ∈ Km,n, find a matrix Ã ∈ Km,n, rank(Ã) ≤ k, such that ‖A− Ã‖2/F → min over
rank-k matrices.

Theorem 3.19 (Best k-rank approximation) Let A = UΣVH be the SVD of A ∈ Km,n. For 1 ≤
k ≤ rank(A) set Uk = (u:,1 . . . u:,k) ∈ Km,k, Vk = (v:,1 . . . v:,k) ∈ Kn,k, Σk = diag(σ1, . . . , σk) ∈
Kk,k. Then for ‖·‖ = ‖·‖F, ‖·‖2 holds true

‖A−UkΣkVH
k ‖ ≤ ‖A− F‖ ∀F ∈ Rk(m, n),

i.e. UkΣkVH
k is the best k-rank approximation to A.

Principal component analysis (PCA)

PCA is used for dimensionality reduction, trend analysis, and data classification. We try to
identify and approximate trends in given data. TODO: what does that mean mathematically

Find first p singular values that are way larger than the final ones.

11

3.5. Total least squares

3.5 Total least squares

For least squares problems Ax = b, we now also allow A to be perturbed.

Given A ∈ Km,n, m > n, rank(A) = n, b ∈ Km, find Â ∈ Km,n, b̂ ∈ Km with

‖(A b)− (Â b̂)‖F → min and b̂ ∈ Im(Â),

which means the perturbed system should be solvable. If (A b)’s SVD is given by

(
A b

)
= UΣVT =

n+1

∑
j=1

σj(U):,j(V)T
:,j,

then a solution to the total least squares problem is given by

x = Â−1b̂ = − 1
(V)n+1,n+1

(V)1:n,n+1

if (V)n+1,n+1 6= 0, otherwise no small perturbation can make b̂ ∈ Im(Â), i.e. the system
solvable.

3.6 Constrained least squares

Given

A ∈ Km,n, rank(A) = n, b ∈ Km,
C ∈ Rp,n, rank(C) = p, p < n, d ∈ Rp,

find x ∈ Rm, such that ‖Ax− b‖2 → min and Cx = d.

Solution via Lagrange multiplier (a saddle point problem)

L(y, m) =
1
2
‖Ay− b‖2

2 + mt(Cy− d)

x = argminy∈Rn max
m∈Rp

L(y, m)

Solution via augmented normal equations(
AT A CT

C 0

)(
x
m

)
=

(
ATb

d

)
.

Solution via SVD. Let C = U(Σp 0)(V1 V2)T and x0 = V1Σ−1UTd be a particular solution
to Cx = d, then x = x0 + ker(C) = x0 + V2y is also a solution. Now solve ‖Ax − b‖2 =
‖AV2y− (b− Ax0)‖2 → min as a linear least squares problem.

12

Chapter 4

Filtering Algorithms

Signal processing: time-discrete signals as vectors/sequences xj = X(j∆t) through sam-
pling of time-continuous signal X(t), t ∈ [0, T], where x = (x0, . . . , xn−1)

T ∈ Rn and
n ∆t ≤ T. More generally l∞(Z) as vector space of bounded signals.

4.1 Discrete Convolutions

We consider finite, linear, time-invariant causal filters. Mathematically, filters are mappings
F : l∞(Z)→ l∞(Z) : F((xj)j∈Z) = (yi)i∈Z. F is

• finite: every finite-length signal (xj)j∈Z produces finite-length output F ((xj)j∈Z),

• time-invariant: F commutes with shift operator, i.e. time-shifted input + filter =̂
apply filters + time-shifted output. The time shift operator Sm : l∞(Z) → l∞(Z) :
Sm((xj)j∈Z) = (xj−m)j∈Z, m ∈ Z. Mathematically, time-invariance is F (Sm((xj)j∈Z)) =
Sm(F ((xj)j∈Z)),

• linear: for all (xj)j∈Z, (yj)j∈Z ∈ l∞(Z), α, β ∈ R it holds true that F (α(xj)j∈Z +
β(yj)j∈Z) = αF ((xj)j∈Z) + βF ((yj)j∈Z),

• causal: output only depends on past and present inputs, not on the future. If xj =
0 ∀j ≤ M =⇒ F ((xj)j∈Z)k = 0 ∀k ≤ M.

Definition 4.1 (Impulse response) The impulse response of channel/filter is the output for a
single unit pulse at t = 0 as input, i.e. the input signal is xj = δj,0.

We write FIR filters for Finite impulse response and LT-FIR for finite time-invariant linear
causal filters. An impulse response has n-th order for (. . . , 0, h0, h1, . . . , hn−1, 0, . . .), n ∈ N.
Any finite signal (xj)j∈Z is a linear combination of shifted pulses.

F ((xj)j∈Z) = F (
m−1

∑
k=0

xkSk((δj,0)j∈Z)) =
m−1

∑
k=0

xkSk(F (δj,0)j∈Z)) = (yj)j∈Z

=⇒ yk = F ((xj)j∈Z) =
m−1

∑
j=0

xjhk−j

where k = 0, . . . , m + n − 2, hj = 0 for j < 0, j ≥ n. The maximal duration of output is
(m + n− 2)∆t (length of filter + length of signal).

Finite length signals (. . . , 0, x0, . . . , xm−1, 0, . . .) can be represented by a vector (x0, . . . , xm−1)
T

and a filter by a linear mapping F : Rm → Rm+n+1, i.e. a matrix.

Definition 4.2 (Discrete convolution) For two sequences f, g ∈ l∞(Z) their discrete convolu-
tion u = f ∗ g ∈ l∞ is defined by

uk = ∑
j∈Z

f j gk−j = ∑
j∈Z

fk−j gj.

13

4.2. Discrete Fourier Transform (DFT)

The discrete convolution for vectors, i.e. finite length sequences, is defined equivalently.
Take y = F ((xj)j∈Z) = x ∗ h ∈ l∞, then for y ∈ Rm+n−1 as a vector yk = ∑m−1

j=0 xjhk−j, where
hj = 0 for j < 0 and j ≥ n.

Filtering an m-periodic signal xj = xj+m for all j ∈ Z with pj = ∑j∈Z hj+lm motivates the
following definition as a special case of discrete convolution.

Definition 4.3 (Discrete periodic convolution) The discrete periodic convolution of two n-
periodic sequences (pj)j∈Z, (xj)j∈Z yields the n-periodic sequence

(yk) = (pk) ∗n (xk), yk =
n−1

∑
j=0

pk−jxj =
n−1

∑
j=0

xk−j pj, k ∈ Z.

Definition 4.4 (Circulant matrix) A matrix C ∈ Kn,n is circulant ⇐⇒ ∃(pk)k∈Z n-periodic
sequence with Ci,j = pj−i, 1 ≤ i, j ≤ n.

A circulant matrix is represented by a vector p = (p0, . . . , pn−1)
T, discrete periodic convolu-

tion by multiplication with a circulant matrix
y0

...

ym−1

 =

p0 pn−1 . . . p1

p1 p0
...

...
...

. . . pn−1
pn−1 pn−2 . . . p1

x0

...

xm−1

 .

Discrete convolution can be reduced to discrete periodic convolution by zero-padding x
to xL with length L = m + n − 1. Then for yL = xL ∗L hL it follows that yL

k = yk for all
0 ≤ k ≤ L. For x ∈ Rm, h ∈ Rn, the output vector will be y = x ∗ h ∈ RL, which can be
represented as Ax = y, where A ∈ RL,m and

x ∗ h = xL ∗L hL = y =

y0
y1

...

yn+m−2

=

h0 0 . . . 0
... h0

...

hn−1
... 0

0 hn−1
. . . h0

...
...

. . .
...

0 0 . . . hn−1

x0

...

xm−1

 = Ax.

4.2 Discrete Fourier Transform (DFT)

All circulant matrices of the same dimensions have the same set of eigenvectors vk, the
eigenvalues λk differ depending on the sequence u defining C. Let Ci,j = ui−j for an n-
periodic u ∈ l∞(Z), ui ∈ C. C’s eigenvalues and eigenvectors are then given by

λk =
n−1

∑
l=0

ulω
−lk
n and vk = (ω

jk
n)

n−1
j=0 ∈ Cn, ωn = e−2πi/n

for k ∈ {0, . . . , n− 1}. The set {v0, . . . , vn−1} forms a trigonometric basis of Cn, i.e. vH
m vm =

n and vH
k vm = 0 for k 6= m.

Definition 4.5 The Fourier matrix is defined as Fn = (ωli
n)

n−1
l,j=0 ∈ Cn,n.

14

4.2. Discrete Fourier Transform (DFT)

Lemma 4.6 (Diagonalization of circulant matrices) For any matrix C ∈ Kn,n, Ci,j = ui−j, (uk)k∈Z

n-periodic sequence, holds true

CFn = Fn diag(d1, . . . , dn), d = Fn(u0, . . . , un−1)
T.

The mapping F : y 7→ Fny is called DFT.

Definition 4.7 (DFT) The linear map Fn : Cn → Cn,Fn(y) = Fny, F ∈ Cn, is called discrete
Fourier transform (DFT), i.e. for c = Fn(y)

ck =
n−1

∑
j=0

yjω
kj
n , k = 0, ..., n− 1.

Lemma 4.8 (Inverse Fouriermatrix) The scaled Fourier-matrix 1√
n Fn is unitary, its inverse is

therefor given by

F−1
n =

1
n

FH
n =

1
n

Fn.

The inverse DFT therefore satisfies

ck =
n−1

∑
j=0

yjω
kj
n ⇐⇒ yk =

n−1

∑
j=0

cjω
−kj
n .

4.2.1 Discrete Convolution via DFT

Theorem 4.9 (Convolution Theorem) The discrete periodic convolution ∗n between n-dimensional
vectors u and x is equal to the inverse DFT of the component-wise product between the DFTs of u
and x, i.e.

u ∗n x =
n−1

∑
j=0

uk−jxj = F−1
n ((Fnu)j(Fnx)j)

n
j=1.

4.2.2 Fast Fourier Transform

Let ck = (Fny)k. By splitting (Fny)k = ck = (c1)k + ωk
n(c2)k, where c1 m-DFT of y1, c2

m-DFT of y2 and n = 2m. This is the basis for a divide and conquer approach by further
splitting c1, c2 in the next step.

Complexity The overall complexity for FFT is O(n log n).

4.2.3 Frequency Filtering via DFT

Given signal x, the Fourier transform is c = Fnx. Vector |ck|, |cn−k| measures how much
oscillation with frequency k is present in signal x, k = 0, . . . , b n

2 c. Note that cn−k = ck and

ω
−(n−k)j
n = ω

−kj
n .

Idea for denoising a signal:

1. transform signal to frequency domain,

2. apply a low-pass filter to cut off high frequency content,

3. transform back to time/space domain.

15

4.2. Discrete Fourier Transform (DFT)

4.2.4 2D DFT

Given a matrix Y ∈ Cm,n, its 2D DFT is defined as 2 nested 1D DFTs, i.e.

(C)k1,k2 =
m−1

∑
j1=0

n−1

∑
j2=0

yj1,j2 ω
j1k1
m ω

j2k2
n =

m−1

∑
j1=0

ω
j1k1
m

(
n−1

∑
j2=0

ω
j2k2
n yj1,j2

)
, 0 ≤ k1 < m, 0 ≤ k2 < n.

Theorem 4.10 (2D DFT) The 2D DFT and 2D inverse DFT are given by

C = Fm(FnYT)T = FmYFn,

Y = F−1
m CF−1

n =
1

mn
FmCFn.

Filtering with 2D DFT is analogous to 1D filtering. 2D discrete convolution is reducible to
2D discrete periodic (circular) convolution.

Theorem 4.11 (2D Convolution Theorem) Let U, X ∈ Cm,n and let the 2D discrete convolution
U ∗m,n X be defined by

(U ∗m,n X)k,l =
m−1

∑
i=0

n−1

∑
j=0

(U)i,j(X)i′,j′ ,

where i′ = (k− i) mod m, j′ = (l − j) mod n. Then

U ∗m,n X =
1

mn
Fm
(
(FmUFn)i,j · (FmXFn)i,j

)
i=0,...,m−1,j=0,...,n−1 Fn.

The theorem states that

U ∗m,n X = DFT2
(
(DFT2(U))i,j · (DFT2(X)i,j)

)
i=0,...,m−1,j=0,...,n−1 .

16

Chapter 5

Data Interpolation in 1D

5.1 Abstract Interpolation

Given a set of data points (ti, yi) ∈ R2, i = 0, . . . , n, ti ∈ I ⊂ R. Find an interpolant, i.e. a
function f : I → R, such that f ∈ C0(I) and f (ti) = yi, ∀i = 0, . . . , n. There are infinitely
many such functions, therefore we need additional assumptions on f such as smoothness
properties. We typically search for f ∈ S ⊂ C0(I), where S is a (m + 1)-dimensional
subspace. The function f is then represented as f (t) = ∑m−1

i=0 αibj(t) with the basis vectors
b0, . . . , bm−1 and coefficients α0, . . . , αm−1.

Interpolation assumes sufficiently accurate measurements, otherwise we would use data
fitting.

5.2 Piecewise linear Interpolation

Connect data points (ti, yi) by line segments. Here is

S = { f ∈ C0(I) : f (t) = βit + γi on [ti−1, ti], βi, γi ∈ R, i = 0, . . . , n}

with dim(S) = n + 1. A basis for S are the hat functions bi

b0 =

{
1− t−t0

t1−t0
for t0 ≤ t < t1,

0 for t ≥ t1.

bj =

1− tj−t

tj−tj−1
for tj−1 ≤ t < tj,

1− t−tj
tj+1−tj

for tj ≤ t < tj+1,

0 for t ≥ t1.

bn =

{
1− tn−t

tn−tn−1
for tn−1 ≤ t < tn,

0 for t < tn−1.

Therefore, bi(tj) = δi,j. This basis is unique. Such a basis is called cardinal basis. Note that
S and {bi}n

j=0 depend on points ti. The interpolant then is given by

f (t) =
n

∑
j=0

yjbj(t).

More general setting

Basis representation f (t) = ∑n
j=0 αjbj(t) with interpolating condition f (ti) = ∑n

j=0 αjbj(ti) =

yi written as (m + 1)× (n + 1) linear system of equations

17

5.3. Global Polynomial Interpolation

Ac =

b0(t0) . . . bm(t0)
...

. . .
...

b0(tn) . . . bm(tn)

α0

...
αm

 =

y0
...

yn

 = y,

where A is called the Vandermande matrix.

Existenz and uniqueness of interpolant depends on regularity of A, we therefore require
m = n. Then, invertibility of A depends on nodes ti and space S, but not on the choice of
basis {bi}n

j=0.

Note that a cardinal basis yields A = I.

5.3 Global Polynomial Interpolation

Space of Polynomials of degree ≤ k Pk can be represented by a monomial basis, such that
each polynomial can be written as a linear combination of monomials. This space is k + 1
dimensional, polynomials of degree k are determined by k + 1 points.

Advantages of using polynomials are

• differentiation and integration is easy to compute,

• approximation property of polynomials,

• efficient evaluation through Horner scheme with complexity O(k)

t(. . . (t(t(αkt + αk−1) + αk−2) + · · ·+ α1) + α0.

5.3.1 Lagrange Polynomials

Definition 5.1 (Lagrange Polynomials) We define the Lagrange polynomials as

Li(t) =
n

∏
j=0
j 6=i

t− tj

ti − tj
.

Basic properties are Li ∈ Pn, Li(tj) = δi,j, linear independent and form a cardinal basis.

Lagrange interpolation

p(t) =
n

∑
i=0

yiLi(t)

Lemma 5.2 (Existence and uniqueness) The general Lagrange polynomial interpolation prob-
lem admits a unique solution p ∈ Pn.

Corollary 5.3 The polynomial interpolation in the nodes T = {tj}n
j=0 defines a linear operator

IT : Rn+1 → Pn : (y0, . . . , yn)
T 7→ interpolating polynomial p

Complexity Evaluating Li is O(n) using the Horner scheme, evaluating p(x) is O(n2). Evalu-
ating N different data value sets using a Lagrange basis approach is O(n2N), while evaluating N
different data value sets using a monomial basis approach is O(n3N).

Remark 5.4 Lagrange interpolation is ill-conditioned for evenly spaced points mostly due to Runge’s
phenomenon: small changes in the data may cause huge changes in the interpolant.

18

5.3. Global Polynomial Interpolation

5.3.2 Barycentric interpolation approach

Introduce a factor λi, i = 0, . . . , n such that

p(t) =
n

∑
i=0

yi
λi

t− ti

n

∏
j=0

(t− tj), λi =
1

(ti − t0)(ti − t1) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tn)
.

Setting p1(t) = 1, we can solve for p(t) to get the

Barycentric interpolation

p(t) =
∑n

i=0 yi
λi

t−ti

∑n
i=0

λi
t−ti

.

Complexity Evaluating N different data value sets using a Barycentric interpolation formula com-
prises the following computational costs:

• Computing λ0, . . . , λn is O(n2)

• Evaluating p(xk) for each k is O(n)

The total computational complexity is O(n2 + nN).

If nodes are close to each other, numerical instabilities might worsen the computation of λi
and Lagrange polynomials.

5.3.3 Newton basis

Definition 5.5 (Newton Polynomials) We define the Newton polynomials as

N0(t) = 1, Ni(t) =
i−1

∏
j=0

(t− tj).

Note that {N0, . . . , Nn} are linearly independent. Since Ni(tl) = 0 for all l < i, Newton
interpolation can be represented by a lower triangular Vandermande matrix A

1 0 0
1 N1(t1) 0 . . . 0

1 N1(t2) N2(t2)
. . .

...
...

...
...

. . . 0
1 N1(tn) N2(tn) . . . Nn(tn)

a0

...
an

 =

y0
...

yn

 .

Lagrange interpolation

p(t) =
n

∑
i=0

aiLi(t)

Complexity The effort for building the system Vandermande matrix for a Newton basis is O(n2).
Solving Aα = y for α is of complexity O(n2) using forward substitution. For N evaluations, this
results in an overall complexity of O(n2N).

Note that algebraically, Vandermande, Lagrange, and Newton interpolation are equivalent
and therefore the respective interpolants unique. Higher degree does not result in a better
approximation.

19

5.3. Global Polynomial Interpolation

Runge’s phenomenon

Interpolating with high degree polynomials leads to oscillation/artifacts at the endpoints
on equidistant nodes. Runge’s phenomenon may be avoided through more densely dis-
tributed points to the endpoints (Chebychev nodes) or piecewise polynomial interpolation.

5.3.4 Update friendly schemes

Aitken-Neville scheme

We define partial interpolating polynomials pk,l as the unique interpolating polynomial of
degree l − k through (tk, yk), . . . , (tl , yl), where pk,k(x) = yk and

pk,l(x) =
(x− tk)pk+1,l(x)− (x− tl)pk,l−1(x)

tl − tk

=pk+1,l(x) +
x− tl

tl − tk
(pk+1,l(x)− pk,l−1(x)), 0 ≤ k ≤ l ≤ n.

The Aitken-Neville scheme then computes p0,n recursively as visualized here

n 0 1 2 3
t0 y0 = p0,0(x) p0,1(x) p0,2(x) p0,3(x)
t1 y1 = p1,1(x) p1,2(x) p1,3(x)
t2 y2 = p2,2(x) p2,3(x)
t3 y3 = p3,3(x)

This is update friendly as a new data value (tn+1, yn+1) can be simply added to the above
scheme and the updated interpolant can be computed partially from already computed
results.

Complexity The effort for evaluation of p0,n at point x using the Aitken-Neville scheme is O(n2).

Divided differences

Update-friendly version using the Newton basis. We set

y[ti] = yi, y[ti, . . . , ti+k] =
y[ti+1, . . . , ti+k]− y[ti, . . . , ti+k−1]

ti+k − ti
,

which visually gives the following recursive calculation

t0 y[t0]
y[t0, t1]

t1 y[t1] y[t0, t1, t2]
y[t1, t2] y[t0, t1, t2, t3]

t2 y[t2] y[t1, t2, t3]
y[t2, t3]

t3 y[t3]

The interpolant is then given by

p(t) = a0 + a1(t− t0) + a2(t− t0)(t− t1) + . . . + an

n−1

∏
j=0

(t− tj),

20

5.4. Splines

where a0 = y[t0], a1 = y[t0, t1], a2 = y[t0, t1, t2], This can be evaluated in a Horner
scheme

(t− t0)(. . . ((t− tn−2)((t− tn−1)an + an−1) + an−2) + · · ·+ a1) + a0.

Complexity Using divided differences, the effort to update the scheme after adding a new data point
is O(n), evaluating p(t) at given point x using Horner scheme is O(n).

5.4 Splines

Piecwise polynomial interpolation

• on each subinterval [ti−1, ti] polynomial of degree d

• matching of first d− 1 derivatives at nodes ti

Definition 5.6 (Spline space) Given an interval I = [a, b] ⊂ R and a mesh M = {a = t0 <
t1 < . . . < tn−1 < tn}, the vector space Sd,M of the spline functions of degree d (i.e. order d + 1) is
defined by

Sd,M = {s ∈ Cd−1(I) : sj = s|[tj−1,tj] ∈ Pd ∀j = 1, . . . , n}.

Note that for s ∈ Sd,M, it is s′ ∈ Sd−1,M and
∫ b

a s(t)dt ∈ s ∈ S . We have d + 1 de-
grees of freedom on n intervals with d constraints on each interior point, in total we get
dim(Sd,M) = n(d + 1)− (n− 1)d = n + d.

5.4.1 Cubic spline interpolation

We now consider S3,M, i.e. sj(t) = aj + bjt + cjt2 + djt3. The 4n coefficients are determined
by

• 2n interpolating conditions sj(tj−1) = yj−1 and sj(tj) = yj,

• n− 1 smoothness conditions for first derivatives s′j(tj) = s′j+1(tj),

• n− 1 smoothness conditions for second derivatives s′′j (tj) = s′′j+1(tj),

• 2 more conditions, for example natural cubic spline interpolation s′′(t0) = s′′(tn) = 0

Economical implementation

Let sj(t) = aj + bj(t − tj−1) + cj(t − tj−1)
2 + dj(t − tj−1)

3 for all j = 1, . . . , n. Then the
coefficients are given by

aj = yj−1, bj =
yj − yj−1

hj
−

hj(2σj−1 + σj)

6
, cj =

σj−1

2
, dj =

σj − σj−1

6hj
,

where hj = tj − tj−1 and σ1, . . . , σn−1 are given by the (n − 1) × (n − 1) linear system of
equations with right hand side rj =

yj+1−yj
hj+1

− yj−yj−1
hj

h1+h2
3

h2
6 0 . . . 0

h2
6

h2+k3
3

h3
6 . . . 0

...
.

...
...

. hn−1
6

0 . . . 0 hn−1
6

hn−1+hn
3

σ1
...
...
...

σn−1

=

r1
...
...
...

rn−1

.

21

Chapter 6

Approximation of Functions in 1D

Given a function f, find a ”simple” approximation f̃ , where simple means that f̃ is

• encoded by small amount of information,

• easy to evaluate.

Interpolation is done by first sampling the given function on some nodes ti and then inter-
polating the resulting data set. The error is measured in Lp-norm as ‖ f − f̃ ‖p.

f : I ⊂ R→ K
sampling−→ (ti, yi = f (ti))

m
i=0

interpolation−→ f̃ = IT y (f̃ (ti) = yi)

6.1 Taylor Approximation

Any function f ∈ Ck(I) can be approximated by Taylor polynomial. Given t0 ∈ I, there
exists a function hk : R→ R such that

f (t) =
k

∑
j=0

f (j)(t0)

j!
(t− t0)

j

︸ ︷︷ ︸
=Tk(t)

+hk(t)(t− t0)
k

and hk(t) → 0 for t → t0. Tk approximates f in a (possibly small) neighbourhood J ⊂ I of
t0. If f ∈ Ck+1(I), we can quantify the error as

f (t)− Tk(t) =
f (k+1)(ξ)

(k + 1)!
(t− t0)

k+1

for some point ξ ∈ (min(t, t0), max(t, t0)).

Taylor approximation is easy and direct, but inefficient (same accuracy often reached with
lower degree polynomials). Access to higher order derivatives is required, which can be
hard to obtain.

6.2 Bernstein Approximation

Taylor polynomials yield local approximation of sufficiently smooth functions. However,
we would like to have a uniform approximation on I without smoothness requirements
(functions are merely continuous).

Definition 6.1 We define the Bernstein polynomials as

Bn
j (t) =

(
n
j

)
tj(1− t)n−j.

22

6.3. Global polynomial Approximation Theory

Theorem 6.2 (Uniform approximation by polynomial) For f ∈ C0([0, 1]) we define the n-th
Bernstein approximant as

pn(t) =
n

∑
j=0

f (j/n)Bn
j (t) =

n

∑
j=0

f (j/n)
(

n
j

)
tj(1− t)n−j pn ∈ Pn.

It satisfies ‖ f − pn‖∞ → 0 for n → ∞. If f ∈ Cm([0, 1]), then ‖ f (k) − p(k)n ‖∞ → 0 for n → ∞
and 0 ≤ k ≤ m.

Bn
j satisfy ∑n

j=0 Bn
j (t) ≡ 1, 0 ≤ Bn

j (t) ≤ 1 for all 0 ≤ t ≤ 1.

This approximation in ‖·‖∞ is uniform. However, convergence is slow (see proof in the
lecture notes).

6.3 Global polynomial Approximation Theory

We first require a notion of a best approximation error.

Definition 6.3 Let ‖·‖ be a (semi-)norm on a space X of functions I → K, I ⊂ R an interval. The
(size of the) best approximation error of f ∈ X in the space Pk of polynomials of degree ≤ k with
respect to ‖·‖ is

dist‖·‖(f , Pk) = inf
p∈Pk
‖ f − p‖.

The best possible L∞-approximation is given by

Theorem 6.4 (Jackson’s theorem) If f ∈ Cr([−1, 1]), r ∈ N, then for any polynomial degree
n ≤ r

inf
p∈Pn
‖ f − p‖L∞([−1,1]) ≤

(
1 +

π2

2

)r
(n− r)!

n!
‖ f (r)‖L∞([−1,1]) = O(n−r).

The norm infp∈Pn‖ f − p‖L∞([−1,1]) is the norm of the best approximation error, it always
exists (Pn is finite-dimensional) and is a uniform approximation. Note that this estimate
depends on smoothness of f.

Lemma 6.5 The Stirling approximating states that n! ∼
√

2πn
(n

e

)n.

Sterling’s formula reduces (n−r)!
n! ≤ C(r)n−r, which is algebraic convergence.

Lemma 6.6 If Φ∗ : C0([a, b]) → C0([−1, 1]) : Φ∗(f)(t̂) = f (Φ(t̂)), is an affine pullback based
on

Φ : [−1, 1]→ [a, b] , Φ(t̂) = a +
1
2
(t̂ + 1)(b− a), −1 ≤ t̂ ≤ 1,

then Φ∗ : Pn → Pn is a bijective linear mapping for any n ∈N0.

Lemma 6.7 (Transformation of norms) For every f ∈ C0([a, b]) we have

‖ f ‖L∞([a,b]) = ‖Φ∗ f ‖L∞([−1,1]), ‖ f ‖L2([a,b]) =

√
|b− a|

2
‖Φ∗ f ‖L2([−1,1]).

Proof Use the affine pullback in the Lp integral. �

23

6.4. Lagrange Approximation

If A is approximation scheme for f ∈ C0([a, b])

‖ f − A‖L∞([a, b]) = ‖Φ∗ f − Â(Φ∗ f)‖L∞([−1, 1]),

‖ f − A‖L2([a, b]) =

√
|b− a|

2
‖Φ∗ f − Â(Φ∗ f)‖L2([−1, 1]).

Using this approximation scheme and the chain rule for ‖ f (r)‖L∞([a, b]), we can express Jack-
son’s theorem for arbitrary intervals, i.e. the best polynomial approximation on C0([a, b]),
as

inf
p∈Pn
‖ f − p‖L∞([a,b]) ≤

(
1 +

π2

2

)r
(n− r)!

n!

(
b− a

2

)r

‖ f (r)‖L∞([a,b]).

For a family of polynomial approximation schemes {An}n∈N, we would like to address
the question of whether we can bound the interpolation error as the number of nodes is
increased, i.e. ‖ f − An f ‖ ≤ T(n) for n → ∞, for different families Tn = {t(n)0 , . . . , t(n)n } of
nodes

Tn = {t(n)j = a + (b− a)
j
n

, j = 0, . . . , n} ⊂ I.

6.4 Lagrange Approximation

We first consider Lagrange interpolation with equidistant nodes.

Definition 6.8 Given an interval I ⊂ R, n ∈ N, a node set T = {t0, . . . , tn}, the Lagrangian
(interpolation polynomial) approximation scheme LT : C0(I)→ Pn is defined by

LT (f) = IT (y) ∈ Pn with y = (f (t0), . . . , f (fn))
T ∈ Kn+1.

Definition 6.9 We define two types of convergence, namely

algebraic convergence if ‖ f − IT f ‖ = O(n−p) for n→ ∞,

exponential convergence if ‖ f − IT f ‖ = O(qn) for n→ ∞.

Theorem 6.10 (Representation of interpolation error) We consider f ∈ Cn+1(I) and the La-
grangian interpolation approximation scheme for a node set T = {t0, . . . , tn} ⊂ I. Then, for every
t ∈ I there exists a Tt ∈ (min{t, t0, . . . , tn}, max{t, t0, . . . , tn}) such that

f (t)− LT (f)(t) =
f (n+1)(Tt)

(n + 1)!

n

∏
j=0

(t− tj).

For f ∈ Cn+1(I) and equidistant nodes T = {t0, . . . , tn} ⊂ I using Lagrangian interpolation,
this results in the following estimates

‖ f − LT f ‖L∞(I) ≤
‖ f (n+1)‖L∞(I)

(n + 1)!
max

t∈I
|(t− t0) . . . (t− tn)|, (6.1)

‖ f − LT f ‖L2(I) ≤
2(n−1)/4|I|n+1√

n!(n+!)!
‖ f (n+1)‖L2(I). (6.2)

Example 6.11 Using this new global estimate, we are able to understand the following examples as
they demonstrate quite different error behavior.

24

6.5. Chebychev Approximation

• g(t) = sin(t) ∈ C∞ has exponential convergence O(qn), simple Lagrange interpolation is
doing much better than predicted by Jackson’s theorem. Using the global estimate we get
‖g− LT f ‖L∞(I) ≤ 1

n+1

(
π
n

)n+1, which is indeed exponential.

• f (t) = 1
1+t2 shows bad behavior on edges, i.e. Runge’s phenomenon. Using the global estimate

we get ‖ f − LT f ‖L∞(I) ≤ n!
(20

n

)n 10
n , which by Stirling is exponential growing and therefore

does not guarantee to convergence.

6.5 Chebychev Approximation

Since it is not possible to control the error of ‖ f (n+1)‖L∞ , we would like to find nodes
t0, . . . , tn such that ‖ω‖L∞(I) is minimal. Because ω(t) = ∏n

j=0(t− tj) ∈ Pn+1, it is equivalent
to searching for q ∈ Pn+1 with minimal ‖q‖L∞(I), where q has n + 1 zeros in I.

Definition 6.12 (Chebychev Polynomials) The n-th Chebychev polynomial is

Tn(t) = cos(n arccos(t)) for− 1 ≤ t ≤ 1, n ∈N.

The zeros of Tn are called the Chebychev nodes and given by tj = cos
(

2j+1
2n π

)
for j = 1, . . . , n

and the leading coefficient of Tn is 2n−1.

Theorem 6.13 Chebychev polynomials satisfy the 3-term recursion for all n ∈N

Tn+1(t) = 2tTn(t)− Tn−1(t), T1(t) = t, T0(t) = 1.

Theorem 6.14 The Chebychev polynomials minimize the supremum norm in the following sense

‖Tn‖L∞([−1,1]) = inf{‖p‖L∞([−1,1]) : p ∈ Pn, p(t) = 2n−1tn + . . .}, ∀n ∈N.

The nodal polynomial ω(t) = ∏n
j=0(t− tj) with minimal ‖ω‖L∞(I) is given by

ω(t) = 2−nTn+1(t),

where tj are the Chebychev nodes of Tn+1. Chebychev nodes are equidistant on circle, but
projected onto the interval [−1, 1] more dense at edges. The interpolation error with this
choice of ω(t), ‖ω‖L∞([−1,1]) = 2−n, is

‖ f − IT (f)‖L∞([−1,1]) ≤
2−n

(n + 1)!
‖ f (n+1)‖L∞([−1,1])

Arbitrary interval [a, b]

The Chebychev nodes in the interval [a, b] are

tk = a +
1
2
(b− a)

(
cos

(
2k + 1

2(n + 1)
π

)
+ 1
)

, k = 0, . . . , n,

the interpolation error for interval [a, b] is

‖ f − IT (f)‖L∞([a,b]) ≤
2−2n−1

(n + 1)!
|I|n+1‖ f (n+1)‖L∞([a,b]).

Note that this is a much better estimate than for equidistant nodes. However, if ‖ f (n)‖L∞([−1,1])
grows too fast it is still possible for the right hand side to diverge.

Example 6.15 For 1
1+t2 , which has ‖ f (n+1)‖L∞([−5,5]) ∼ 2n+1(n + 1)!, the right hand side becomes

105n.

25

6.5. Chebychev Approximation

Lebesgue constant

We would like to have an estimate such that ‖ f (n)‖L∞([−1,1]) is independent of the number
of nodes as in Jackson’s theorem.

Definition 6.16 (Lebesgue constant) Given a node set T = {t0, . . . , tn} and approximation
scheme IT : Rn+1 → Pn : IT (f (t0), . . . , f (tn)) = LT f , the Lebesgue constant is defined as

λT = sup
y∈Rn+1

‖IT y‖∞
‖y‖∞

.

The Lebesgue constant is a quality measure for polynomial interpolation scheme, i.e. the
norm of the operator IT in L∞ sense. For LT : C0(I)→ Pn : f 7→ LT f = IT (f (t0), . . . , f (tn))
it follows

‖LT f ‖L∞(I) ≤ λT ‖ f ‖L∞(I).

For all f ∈ C0(I) and λT = maxt∈I ∑n
j=0 |Lj(t)|, it follows that the interpolation error is at

most (1 + λT) worse than the best approximation error for all f

‖ f − LT f ‖L∞(I) ≤ (1 + λT) inf
p∈Pn
‖ f − p‖L∞(I).

This links the best approximation error with the interpolation error from Jackson’s theorem
6.4. In approximation theory, this result is a special case of

Theorem 6.17 (Lebesgue’s lemma) Given a normed vector space (X, ‖·‖), U ⊂ X subspace, and
P : X → U a linear projection onto U. Then

‖x− Px‖ ≤ (1 + ‖P‖) inf
u∈X
‖x− u‖, ∀x ∈ X.

The Lebesgue constant for different type of nodes can be estimated as

• Equidistant nodes: λT ≥ Cen/2 (at least exponential growth),

• Chebychev nodes: λT ≤ 2
π log(n + 1) + 1 (at most log growth).

For f ∈ Cr([−1, 1]), combining the general estimate with Jackson’s theorem gives

‖ f − LT f ‖L∞([−1,1]) ≤
(

2
π

log(1 + n) + 2
)

︸ ︷︷ ︸
1+λT

(
1 +

π2

2

)r
(n− r)!

n!
‖ f (r)‖L∞([−1,1]).

Implementation

Instead of sampling a given function on the Chebychev nodes, we write p as a Chebychev
expansion p(t) = ∑n

j=0 αjTj(t) since the Chebychev polynomials form a basis of Pn.

To efficiently evaluate Chebychev polynomials given coefficients αj, use the 3-term recursion
formula 6.13

p(x) =
n−1

∑
j=0

α̃jTj(x) with α̃j =

αj + 2xαj+1 if j = n− 1,
αj − αj+2 if j = n− 2,
αj else.

26

6.6. Piecewise polynomial Lagrange interpolation

To compute the coefficients αj use the interpolation condition to get

p(cos(2πs)) =
n

∑
j=−n

β j exp(−2πijs), where β j =

0 for j = n + 1,
1
2 αj for j = 1, . . . , n,
α0 for j = 0,
1
2 αn−j for j = −n, . . . ,−1.

Using some further transformations it follows that

2n+1

∑
j=0

β j−n exp
(
−πi(j− n)

2(n + 1)

)
ω

jk
2(n+1) = exp

(
− πink

n + 1

)
zk,

with zk =

{
yk = f (tk) k = 0, . . . , n
y2n+1−k k = n + 1, . . . , 2n + 1

.

Using

ck = β j−n exp
(
−πi(k− n)

2(n + 1)

)
, bk = zk exp

(
− πink

n + 1

)
,

the system can be solved via inverse DFT c = F−1
2(n+1)b to recover β j from c and αj from β j.

Comlexity The cost of recursively evaluating a Chebychev expansion is O(n). The cost of calculat-
ing coefficients αj for a Chebychev expansion is O(n log n).

6.6 Piecewise polynomial Lagrange interpolation

General local Lagrange interpolation on a meshM = {a = x0 < x1 < . . . < xm = b}.

1. Choose local degree nj ∈N0 for each cell of the mesh j = 1, . . . , m.

2. Choose set of local interpolation nodes

T j = {tj
0, . . . , tj

nj} ⊂ Ij = [xj−1, xj], j = 1, . . . , m

for each mesh cell/grid interval Ij. The size of every node set is nj + 1.

3. Define piecewise polynomial interpolant s : [x0, xm]→ K

sj = s|Ij ∈ Pnj and sj(t
j
i) = f (tj

i) i = 0, . . . , nj, j = 1, . . . , m. (6.3)

Corollary 6.18 (Continuous local Lagrange Interpolants) If the local degrees nj are at least 1

and the interpolation nodes tj
k, j = 1, . . . , m, k = 0, . . . , nj, for local Lagrange interpolation satisfy

tj
nj = tj+1

0 ∀j = 1, . . . , m− 1 =⇒ s ∈ C0([a, b]),

then the piecewise polynomial Lagrange interpolant according to 6.3 is continuous on [a, b], i.e.
s ∈ C0([a, b]).

27

6.7. Overview of estimates

Error estimate

Derivation of error estimate by decreasing the mesh width hM (h-convergence) considering
the special case of fixed number of nodes per grid nj = n. Number of nodes ≤ |b−a|

hM
≤

|b−a|(n−1)
hM

.

Applying the old estimate 6.1 on each subinterval gives the overall estimate with algebraic
convergence of rate n + 1

‖ f − s‖L∞([x0,xm])
≤ hn+1

M
1

(n + 1)!
‖ f (n+1)‖L∞([x0,xm])

,

‖ f − s‖L2(I) ≤ hn+1
M

2(n−1)/4√
n!(n + 1)!

‖ f (n+1)‖L2([x0,xm])
.

Remark 6.19 Note that

• n is now fixed (and small), e.g. for piecewise linear n = 1 and estimate holds if f |Ij ∈ C2,

• piecewise smoothness of f is sufficient,

• since n can be small, convergence result also for f with low regularity,

• slow convergence.

Similar estimate is possible for cubic spline interpolation. For equidistant mesh with mesh
width h, we get an error estimate with algebraic convergence in h

‖ f − s‖L∞([t0,tn])
≤ 5

384
h4‖ f (4)‖L∞([t0,tn])

, f ∈ C4([t0, tn]).

6.7 Overview of estimates

Jackson’s theorem

If f ∈ Cr([−1, 1]), r ∈N, then for any polynomial degree n ≤ r

inf
p∈Pn
‖ f − p‖L∞([−1,1]) ≤

(
1 +

π2

2

)r
(n− r)!

n!
‖ f (r)‖L∞([−1,1]) = O(n−r).

inf
p∈Pn
‖ f − p‖L∞([a,b]) ≤

(
1 +

π2

2

)r
(n− r)!

n!

(
b− a

2

)r

‖ f (r)‖L∞([a,b]).

Lagrange

For f ∈ Cn+1(I) and equidistant node set T = {t0, . . . , tn} ⊂ I

‖ f − LT f ‖L∞(I) ≤
‖ f (n+1)‖L∞(I)

(n + 1)!
max

t∈I
|(t− t0) . . . (t− tn)|,

‖ f − LT f ‖L2(I) ≤
2(n−1)/4|I|n+1√

n!(n+!)!
‖ f (n+1)‖L2(I),

28

6.7. Overview of estimates

Chebychev

For f ∈ Cn+1(I), I = [−1, 1], [a, b] and node set T = {t0, . . . , tn} ⊂ I

‖ f − IT (f)‖L∞([−1,1]) ≤
2−n

(n + 1)!
‖ f (n+1)‖L∞([−1,1]),

‖ f − IT (f)‖L∞([a,b]) ≤
2−2n−1

(n + 1)!
|I|n+1‖ f (n+1)‖L∞([a,b]).

Lebesgue constant

‖ f − LT f ‖L∞(I) ≤ (1 + λT) inf
p∈Pn
‖ f − p‖L∞(I) ∀ f ∈ C0(I).

Chebychev with Lebesgue constant For f ∈ Cr([−1, 1])

‖ f − LT f ‖L∞([−1,1]) ≤
(

2
π

log(1 + n) + 2
)

︸ ︷︷ ︸
1+λT

(
1 +

π2

2

)r
(n− r)!

n!
‖ f (r)‖L∞([−1,1]).

Piecewise Lagrange

‖ f − s‖L∞([x0,xm])
≤ hn+1

M
1

(n + 1)!
‖ f (n+1)‖L∞([x0,xm])

,

‖ f − s‖L2(I) ≤ hn+1
M

2(n−1)/4√
n!(n + 1)!

‖ f (n+1)‖L2([x0,xm])
.

29

Chapter 7

Numerical Quadrature

Approximate
∫ b

a f (t)dt using only point evaluations of f .

7.1 Quadrature Formulas

Definition 7.1 An n-point quadrature formula/quadrature rule on [a, b] provides an approxima-
tion of the value of an integral through a weighted sum of points values of the integrand∫ a

b
f (t)dt ≈ Qn(f) =

n

∑
j=1

wn
j f (cn

j).

Cost of evaluation of Qn(f): n point evaluations of f and n multiplications and additions.

It is sufficient to consider a reference interval [−1, 1], because∫ a

b
f (t)dt =

1
2
(b− a)

∫ 1

−1
f̂ (t)dt

f̂ (t) = f
(

1
2
(1− t)a +

1
2
(t + 1)b

)
,

where f̂ is the affine pullback Φ∗ f of f to [−1, 1].

Quadrature by approximation schemes

For given linear interpolation scheme IT with node set T = {t1, . . . , tn} ⊂ [a, b], we can
approximate ∫ b

a
f (t)dt ≈

∫ b

a
IT (f (t1), . . . , f (tn))

T(t)dt =
n

∑
j=1

f (tj)ω
n
j

with ωn
j =

∫ b
a IT (ej)(t)dt.

We define the quadrature error as En(f) = |
∫ b

a f (t)dt−Qn(f)|. We get

En(f) ≤ |b− a| ‖ f − IT (f (t1), . . . , f (tn))
T‖L∞([a,b])︸ ︷︷ ︸

interpolation error

7.2 Polynomial Quadrature Formulas

QF induced by Lagrange interpolation scheme IT .

30

7.3. Gauss Quadrature

For given Lagrange interpolation scheme IT with node set T = {t1, . . . , tn} ⊂ [a, b], we can
approximate the integral Qn by approximating f with a polynomial pn−1.∫ b

a
f (t)dt ≈

∫ b

a
pn−1(t)dt =

n

∑
j=1

f (tj−1)ω
n
j−1

with ωn
j =

∫ b
a Lj(t)dt.

Example 7.2 (Midpoint rule) Rule for n = 1 and t0 = 1
2 (a + b)∫ b

a
f (t)dt ≈ (b− a) f (

1
2
(a + b))

Example 7.3 (Newton-Cotes formulas) Lagrange interpolation with equidistant nodes tj = a +
b−a
n−1 j with j = 0, . . . , n− 1.

• n = 2 (Trapezoidal rule)
∫ b

a f (t)dt ≈ (b−a)
2 (f (a) + f (b))

• n = 3 (Simpson rule)
∫ b

a f (t)dt ≈ (b−a)
6 (f (a) + 4 f (a+b

2) + f (b))

However, Lagrange interpolation is numerically unstable for large n. Therefore, use Chebychev
interpolation instead, which is the Clenshaw-Curtis QF.

7.3 Gauss Quadrature

Quality measure for QF.

Definition 7.4 The order of a quadrature rule Qn : [a, b]→ R is defined as

order(Qn) = max{m ∈N0 : Qn(p) =
∫ b

a
p(t)dt ∀p ∈ Pm}+ 1,

that is the maximum degree +1 of polynomials for which the quadrature rule is guaranteed to ne
exact.

Note that the order is invariant under affine transformations. Polynomial QF with n points
is exact for p ∈ Pn−1, which is of order ≤ n.

Theorem 7.5 An n-point quadrature rule on [a, b] Qn(f) = ∑n
j=1 ωj f (tj), f ∈ C0([a, b]) with

nodes tj ∈ [a, b] and weights ωj ∈ R, j = 1, . . . , n is of order ≥ n if and only if

ωj =
∫ b

a
Lj(t)dt, j = 1, . . . , n,

with Lj the j-th Lagrange polynomial associated with the ordered node set {t1, . . . , tn}

This means for QF to have order ≤ n, weights ωj only depend on node set T = {t1, . . . , tn}.

Theorem 7.6 The maximal order of an n-point quadrature is 2n.

If we can find a family Qn of QFs such that Qn is n point and of order 2n, we must have

• P̄n = (t− cn
1) . . . (t− cn

n), P̄n ∈ Pn

• P̄n ⊥ Pn−1 in L2([−1, 1])

• P̄n is unique

31

7.3. Gauss Quadrature

• For P̄n = tn + αn−1tn−1 + . . . + α1t + α0, we have ∑n−1
j=0 αj

∫ 1
−1 tltjdt = −

∫ 1
−1 tltndt ⇐⇒

Aα = b, where A is symmetric and positive definite

• α exists and is unique

Theorem 7.7 Let {P̄n}n∈N0 be a family of non-zero polynomials that satisfies

• P̄n ∈ Pn

•
∫ 1
−1 q(t)P̄n(t)dt = 0 for all q ∈ Pn−1 (L2-orthogonality)

• The set {cn
j }m

j=1, m ≤ n, of real zeros of P̄n contained in [−1, 1]

Then the quadrature rule Qn(f) = ∑m
j=1 ωn

j f (cn
j) with weights ωj =

∫ b
a Lj(t)dt, j = 1, . . . , n,

provides a quadrature formula of order 2n on [−1, 1].

Quadrature formulas with n points of order 2n are unique.

Definition 7.8 The n-th Legendre polynomial Pn is defined by

• Pn ∈ Pn

•
∫ 1
−1 q(t)Pn(t)dt = 0 for all q ∈ Pn−1 (L2-orthogonality)

• Pn(1) = 1.

Lemma 7.9 Pn has n distinct zeros in (−1, 1). These zeros are called the Gauss points.

Definition 7.10 The n-point Quadrature formulas whose nodes, the Gaussian points, are given
by the zeros of the Legendre polynomial, and whose weights are chosen according to Theorem 7.5, are
called Gauss-Legendre quadrature formulas.

Lemma 7.11 The weights of the Gauss-Legrendre quadrature formulas are positive.

Recursive formula for Legrendre polynomials

P0(t) = 0, P1(t) = t, Pn+1(t) =
2n + 1
n + 1

tPn(t)−
n

n + 1
Pn−1(t)

Quadrature error & best approximation error

Theorem 7.12 For every n-point quadrature rule Qn = ∑n
j=1 wn

j f (cn
j) of order q ∈N with weights

ωi ≥ 0, the quadrature error satisfies

En(f) ≤ 2|b− a| inf
p∈Pq−1

‖ f − p‖L∞([a,b])︸ ︷︷ ︸
best approximation error

∀ f ∈ C0([a, b]).

Lemma 7.13 For every n-point quadrature rule Qn = ∑n
j=1 wn

j f (cn
j) of order q ∈ N with weights

ωi ≥ 0, the quadrature error En(f) for integrand f ∈ Cr([a, b]), r ∈N0 satisfies

• if q ≥ r: En(f) ≤ Cq−r|b− a|r+1‖ f (r)‖L∞([a,b]) (algebraic convergence),

• if q < r: En(f) ≤ |b−a|q+1

q! ‖ f (q)‖L∞([a,b]) (exponential convergence),

with a constant C > 0 independent of n, f and [a, b]].

32

7.4. Composite Quadrature

f ∈ Cr([a, b]): algebraic convergence with rate r (log-log plot)
f ∈ C∞([a, b]): exponential convergence (lin-log plot))

Substitution might change smoothness of function on [a, b].

We can approximate sharp algebraic convergence as En(f) = Θ(n−r) ≈ C1n−r, and sharp
exponential convergence as En(f) = Θ(λn) ≈ C2λn, for some constant C1, C2 > 0 indepen-
dent of n.

To reduce quadrature error of algebraic convergence by factor ρ > 1, we must increase the
number of nodes by

nnew = nold ρ1/r.

For higher r, we need less additional nodes to increase accuracy.

To reduce quadrature error of exponential convergence by factor ρ > 1, we must increase
the number of nodes by

nnew = nold +

⌈∣∣∣∣ log(ρ)
log(λ)

∣∣∣∣⌉ ,

so the additional number of nodes is independent of the already added nodes.

7.4 Composite Quadrature

Divide interval with a mesh M = {a = x0 < x1 < . . . < xm = b} and apply QF on each cell
Ij = [xj−1, xj] to get QFs Qj

nj ∫ b

a
f (t)dt =

m

∑
j=1

∫ xj

xj−1

f (t)dt.

The error estimate for composite quadrature is

E(n) =

∣∣∣∣∣ m

∑
j=1

∫ xj

xj−1

f (t)dt−Qj
nj(f)

∣∣∣∣∣ ≤ C hs
M|b− a| max

j=1,...,m
‖ f (s)‖L∞(Ij)

.

for s = min{r, q}. Algebraic convergence in the mesh width hM ”h-convergence”. For large
r of rate q, for small r of rate r.

Composite trapezoidal has q = 2, composite Simpson has q = 4. So for smooth functions,
error is of O(h2) and O(h4), respectively.

For f ∈ Cr

• composite QF is O(n−min{q,r}),

• Gauss QF is O(n−r).

Therefore, Gauss is at least as good as composite QF.

For f ∈ C∞

• composite QF is O(n−q) (algebraic convergence),

• Gauss QF is O(λn) (exponential convergence).

Therefore, use composite QF only if function is not overally smooth.

33

Chapter 8

Iterative Methods for Non-Linear
Systems of Equations

Given a function F, we want to efficiently solve for f (x) = 0. Higher order converge faster.

Definition 8.1 (Order of convergence) A sequence x(k) in Rn with limit x∗ ∈ Rn converges
with order p if

∃0 < L : ‖x(k+1) − x∗‖ ≤ L‖x(k) − x∗‖p, ∀k ∈N.

For p = 1, we also require L < 1. This convergence is called linear.

8.1 1D Iterative Methods

8.1.1 Bisection

Intermediate value theorem yields an easy method for finding the root for continuous func-
tions. Convergence |e(k)| = |x(k) − x∗| ≤ 2−k|a− b|.

+ robustness, global convergence

- rather slow convergence

- no extension to higher dimensions

Bisection does not converge linear, because |e(k)| ≤ Lk|a − b| does not exclude |e(k)| >
L|e(k−1)|, which is needed for linear convergence.

8.1.2 Fixed Point iterations

If x∗ is a fixed point (FP) of Φ = f (x) + x, i.e. Φ(x∗) = x∗, then f (x∗) = 0.

Bisection only needed continuity, now we require Lipschitz continuity for Φ on [a, b]

∃L < 0 ∀x, y ∈ [a, b] : |Φ(x)−Φ(y)| ≤ L|x− y|.

Suppose Φ has a fixed point x∗. If L < 1, Φ is called a contractive mapping. This guarantees
convergence of the fixed point iteration x(k) = Φ(x(k−1)) for some initial guess x(0) to x∗,
because

|x(k) − x∗| ≤ L|x(k−1) − x∗| → 0 for k→ ∞.

Fixed Point iterations converge at least linearly. Local contractivity is sufficient, but does
not guarante global convergence. Also, the initial value x(0) must be sufficiently close to x∗.

34

8.2. Nonlinear systems of equations

8.1.3 Algorithm for root-finding with quadratic convergence

Let f ∈ C1. Rearranging its Taylor series f (x) = f (x(k)) + (x− x(k)) f ′(xk) = 0 gives the

Newton formula x(k+1) = x(k) − f (x(k))
f ′(x(k))

.

Newton method as a fixed point iteration is Φ(x) = x − f (x)
f ′(x) . If f ∈ C2 and f ′(x∗)) 6= 0,

then the convergence will be quadratic.

Lemma 8.2 If Φ : U ⊂ R → R is m + 1 times continuously differentiable, Φ(x∗) = x∗ for some
x∗ in the interior of U, and Φ(l)(x∗) = 0 for l = 1, ..., m, m ≥ 1, then the fixed point iteration
(8.2.2) converges locally to x∗ with order greater than m + 1.

Remark 8.3 x(0) ∈ I∗ guarantees f ′(x(k)) 6= 0 for all the iterates. For quadratic convergence
f ∈ C2(I∗) is sufficient.

In summary we need a sufficiently small neighbourhood I∗ of x∗ such that f ′(x) 6= 0 on I∗

and f ∈ C2(I∗).

Approximating derivatives

Each Newton step requires the computation of f ′(x(k)), which can be costly or not accessible

at all. The Secant method approximates derivatives f ′(x(k)) ≈ f (x(k))− f (x(k−1))

x(k)−x(k−1) , a Newton step
becomes

x(k+1) = x(k) − f (x(k))(x(k) − x(k−1))

f (x(k))− f (x(k−1))
.

This method’s convergence is again local, it needs f ′(x∗) 6= 0 (simple root), f locally C2. Its
rate is superlinear p = 1+

√
5

2 ≈ 1.61, but not of quadratic order.

Definition 8.4 An iterative method is a stationary m-point method if x(k) depends on m most
recent iterates x(k−1), . . . , x(k−m), i.e. x(k) = ΦF(x(k−1), . . . , x(k−m)), for solving F(x) = 0.

Secant method is a 2-point method, Newton method is a 1-point method.

8.2 Nonlinear systems of equations

Given F : D ⊂ Rn → Rn, find a root x∗ such that F(x∗) = 0. Aspects of iterative methods

• Convergence: (x(k))k∈N convergent, limk→∞ x(k) = x∗

• Consistency: ΦF(x∗, . . . , x∗) = x∗ ⇐⇒ F(x∗) = 0

• Rate and order of convergence ‖x(k) − x∗‖ → 0

Definition 8.5 Two norms ‖·‖a and ‖·‖b on a vector space V are equivalent if

∃C1, C2 > 0 : C1‖v‖a ≤ ‖v‖b ≤ C2‖v‖a ∀v ∈ V

This implies that convergence in Rn (or any finite dimensional vector space) is independent
of choice of norm, but in general the convergence rate depends on the chosen norm.

Definition 8.6 (Local and global convergence) As stationary m-point iterative method converges
locally to x∗ if there is a neighbourhood U ⊂ D of x∗ such that x(0), . . . , x(m−1) ∈ U implies that
x(k) is well defined and limk→∞ x(k) = x∗, where (x(k))k∈N0 is the (infinite) sequence of iterates. If
U = D, the iterative method is globally convergent.

35

8.2. Nonlinear systems of equations

8.2.1 Fixed point iterations in Rn

Definition 8.7 (Consistency of fixed point iterations) A fixed point iteration x(k+1) = Φ(x(k))
is consistent with F(x) = 0 if for x ∈ U ∩ D

F(x) = 0 ⇐⇒ Φ(x) = x.

Definition 8.8 (Contractive mapping) Φ : U ∈ Rn is contractive if

∃L < 1 ‖Φ(x)0Φ(y)‖ ≤ L‖x− y‖ ∀x, y,∈ U

Contractivity of Φ implies that if Φ(x∗) = x∗, then a fixed point iteration will converge to
x∗. The convergence is at least linear. If Φ is contractive =⇒ Φ has at most one fix point

Theorem 8.9 (Banach’s fixed point theorem) If D ⊂ Kn closed and bounded and Φ : D → D
satisfies

∃L < 1 : ‖Φ(x)−Φ(y)‖ ≤ L‖x− y‖ ∀x, y ∈ D,

then there exists a unique fixed point x∗ ∈ D, Φ(x∗) = x∗, which is the limit of the sequence of
iterates x(k+1) = Φ(x(k)) for any x(0) ∈ D.

Convergence criteria for FPI for Φ differentiable and knowing Φ(x∗) = x∗.

Lemma 8.10 If Φ : U ⊂ Rn → Rn, Φ(x∗) = x∗, Φ differentiable in x∗ and ‖DΦ(x∗)‖ < 1, then
the fixed point iteration x(k+1)=Φ(x(k)) converges locally and at least linearly.

Lemma 8.11 Let U be convex and Φ : U ⊂ Rn → Rn be continously differentiable with

L = sup
x∈U
‖DΦ(x)‖ < 1.

If Φ(x∗) = x∗ for some interior point x∗ ∈ U, then the fixed point iteration x(k+1) = Φ(x(k))
converges to x∗ at least linearly with rate L.

Locally contractive Φ implies that the iteration converges locally around FP at least linearly.

Termination criterion for contractive FPI

• Residual based: stop when ‖F(x(k))‖ ≤ τ,

• correction based: stop when ‖x(k+1) − x(k)‖ ≤ τ or ‖x(k+1) − x(k)‖ ≤ τrel‖x(k+1)‖.

From discussion about condition number: ‖F(x(k) − F(x∗))‖ small does not imply that
‖x(k) − x∗‖ is small.

If iteration is linearly convergent: ‖x(k)− x∗‖ ≤ (1− L)‖x(k)‖ ≤ ‖x(k+1)− x∗‖. This suggests
to use

L
1− L

‖x(k+1) − x(k)‖ ≤ τ

as stopping criterion. It guarantees ‖x(k+1) − x∗‖ ≤ τ. However, estimating L can be
difficult. But the pessimistic estimate τ > L is still reliable.

36

8.3. Newton’s method

8.3 Newton’s method

If DF(x(k)) is regular, general Newton’s method in Rn is given by

x(k+1) = x(k) −DF(x(k))−1F(x(k)).

Theorem 8.4.45 of the lecture notes roughly states: If F(x∗) = 0 and DF(x∗) is regular, then
it is locally quadratically convergent.

8.3.1 Stopping criterion for Newton’s method

Stop if

‖x(k+1) − x(k)‖ = ‖DF(x(k))−1F(x(k))‖ ≤ τ‖xk‖.

However, if x(k) was a good approximation, we would have computed new Newton correc-
tion DF(x(k))−1F(x(k)) and not used it in iteration. In practice, one therefore often uses a
simplified Newton correction as a cheaper stopping criterion

‖DF(x(k−1))−1F(x(k))‖ ≤ τ‖xk‖.

8.3.2 Damped Newton method

Examples of failures of Newton’s method

• Local min/max

• Asymptotes for F(x) = xex − 1

• Overshooting for F(x) = arctan(x)

We want a large region of convergence. Idea for damped Newton method: check in each
iteration whether distance ‖x(k+1) − x(k)‖ is decreasing. If not, don’t take a full Newton
step, but instead damp the Newton correction by a factor 0 ≤ λ(k) ≤ 1

x(k+1) = x(k) − λ(k)DF(x(k))−1F(x(k)).

Choose λ(k) maximal sucht that the distance between iterates is decreasing.

Natural Monotonicity Test NMT Choose maximal 0 < λ(k) < 1 such that

‖DF(x(k))−1F(x(k) + λ(k)∆x(k))‖ ≤
(

1− λ(k)

2

)
‖DF(x(k))−1F(x(k))‖2.

In practice set λ(k) = 1 and check NMT, repeatedly take λ(k) ← λ(k)

2 until NMT passes for
the first time.

8.3.3 Quasi Newton method

Broyden’s quasi-Newton method Broyden’s quasi-Newton method for solving F(x) = 0 is

x(k+1) = x(k) + ∆x(k), ∆x(k) = −J−1
k F(x(k)),

Jk+1 − Jk =
F(x(k+1))(∆x(k))T

‖∆x(k)‖2
2

.

37

8.4. Unconstrained Optimization

Jk − Jk−1 is a rank 1 matrix. Given an initial J0, we can obtain Jk by rank-1 updates.

Note: one can use Sherman-Morrison-Woodbury formula 2.2 to calculate J−1
k from J−1

k−1.

Remark 8.12 In general, iterative methods for nonlinear systems should have convergence monitor,
i.e. a simple check at each iteration whether convergence to be expected or not. Example: NMT for
damped Newton. If it fails repeatedly, stop and report error.

8.4 Unconstrained Optimization

Given F : Rn → R, find min/max of F. Optimization problems we have already seen are

• least-squares solution: find x ∈ Kn such that ‖Ax− b‖2 → min,

• generalized solution: find least squares solution x to Ax = b such that ‖x‖2 → min,

• norm-constrained extrema: given A ∈ Km,n, m ≥ n, find x ∈ Kn, ‖x‖2 = 1 such that
‖Ax‖2 → min,

• best low-rank approximation: given A ∈ Km,n, find Ã ∈ Km,n, rank(Ã) ≤ k such that
‖A− Ã‖2/F → min over rank-k matrices,

• total least squares problem: given A ∈ Km,n, m ≥ n, rank(A) = n, b ∈ Rn, find
Â ∈ Km,n, b̂ ∈ Rm such that ‖[Ab]− [Âb̂]‖F → min with b̂ ∈ Im(Â)

We only consider minimization, because maximizing F is equivalent with minimizing −F.

Definition 8.13 (Global vs. local minimum) x∗ is a global minimum of F : Rn → R if F(x∗) ≤
F(x) ∀x ∈ Rn, x∗ is a local minimum of F if there is ε > 0 such that for all x with ‖x− x∗‖ ≤ ε
F(x∗) ≤ F(x).

An application of optimization techniques to machine learning is the following

Maximum likelihood estimation

Suppose some quantity can be modeled with a probability distribution, we would like
to estimate mean µ and variance σ through randomized sample {w1, . . . , wn} assuming a
normal distribution for f , i.e.

f (w, µ, σ) =
1√
2πσ

e−(w−µ)2/(2σ2),

where f (wi, µ, σ) likelihood to observe wi for sample i. Value of sample i is independent of
value of sample j.

Maximize P

P({w1, . . . , wn}, µ, σ) =
n

∏
j=1

f (wj, µ, σ)

as a function in µ, σ, while {w1 . . . , wn} is fixed, to estimate µ, σ. In practice, one maximizes
log P instead (same location of max, but better numerical properties).

38

8.4. Unconstrained Optimization

8.4.1 Optimization with differentiable objective function

F : Rn → R differentiable, ∇F direction of greatest increase, −∇F is direction of steepest
descent, because locally around x̄

F(x) ≈ F(x̄) + (x− x̄)T∇F(x̄) =⇒ F(x̄ + τ∇F(x̄)) ≈ F(x̄) + τ‖∇F(x̄)‖2,

which for τ > 0 increases and for τ < 0 decreases.

A stationary point ∇F(x) = 0 could be a local or global maximum, minimum, or saddle
point. If F is twice differentiable, we can check the Hessian matrix at a stationary point

HF(x) =
(

∂2F
∂xi∂xj

(x)
)n

i,j=1

Taylor expansion if x̄ is stationary point

F(x) ≈ F(x̄) +∇F(x̄)T(x− x̄)︸ ︷︷ ︸
=0

+
1
2
(x− x̄)T HF(x̄)(x− x̄)︸ ︷︷ ︸
increase/decrease/unclear

Type of extremum in x̄ is determined by HF, i.e. if

• HF(x̄) positive definite, x̄ is a local minimum,

• HF(x̄) negative definite, x̄ is a local maximum,

• HF(x̄) indefinite, x̄ is a saddle point,

• HF(x̄) not invertible, e.g. whole region of saddle points (unlikely).

Positive definiteness can be checked for example by checking whether Cholesky factoriza-
tion exists (cf. exercises).

8.4.2 Optimization with convex objective function

Definition 8.14 (Convex function) A function F : Rn → R is called (stricly) convex if for all
x, y ∈ Rn and all α ∈ (0, 1)

F((1− α)x + αy) ≤ (1− α)F(x) = αF(y), (convex)
F((1− α)x + αy) < (1− α)F(x) = αF(y). (strictly convex)

Lemma 8.15 If x̄ ∈ Rn is a local minimum of F : Rn → R, then it is a global minimum.

8.4.3 Methods in 1D

We now consider f : R→ R.

Newton’s method

Newton’s methods (or variants) applied to f ′ if f ∈ C2, i.e. iterate

xk+1 = xk −
f ′(xk)

f ′′(xk)

Note that Newton’s method for minimization is equivalent with approximating a function
locally by a parabola and look for its vertex, i.e.

f (x) ≈ f (xk) + f ′(xk)(x− xk) +
1
2

f ′′(xk)(x− xk)
2,

which is a parabola with vertex xk − f ′(xk)
f ′′(xk)

.

39

8.4. Unconstrained Optimization

Golden Section Search

Algorithm for non-differentiable unimodal functions. For unimodal functions, a local mini-
mum is a global minimum.

Definition 8.16 A function f : [a, b]→ R is called unimodal if there exists xu ∈ [a, b] such that f
is monotonically decreasing on [a, xu] and monotonically increasing on [xu, b].

Example 8.17 f (x) = |x|, the absolute value function, is unimodal.

Idea: Suppose for 2 values x0, x1 such that a < x0 < x1 < b we know f (x0) ≥ f (x1) and we
can discard interval [a, x0]. If instead f (x0) ≤ f (x1) discard [x1, b]. Then iterate.

Suppose a = 0, b = 1, x(0)0 = 1− λ, x(0)1 = λ, λ ∈ (1
2 , 1). Define λ such that λ2 = 1− λ.

Positive solution λ = 1
2 (
√

5− 1) (ϕ = λ + 1 is golden ratio).

initialize x0 = a + (1− λ)(b− a), x1 = a + λ(b− a), f0 = f (x0), f1 = f (x1)
while |b− a| > tol

if f0 ≥ f1
a← x0, x0 ← x1, f0 ← f1
x1 ← a + λ(b− a), f1 ← f (x1)

if f1 > f0
b← x1, x1 ← x0, f1 ← f0
x0 ← a + (1− λ)(b− a), f0 ← f (x0)

If f is unimodal on [a, b], this algorithm converges to the global minimum. In each iteration,
the interval size is reduced by factor 0.618 ≈ λ < 1, i.e. linear-type convergence as for
bisection (root-finding). If f has multiple local minima, golden section search finds some
local minimum.

8.4.4 Methods in higher Dimensions

We now consider f : Rn → R.

Gradient Descent

∆x = −∇F(x) is the steepest descent/ gradient descent direction ∇F(x)T∆x < 0. If
∇F(x) ≤ 0 and α > 0 is sufficiently small, then gradient descent guarantees F(x− α∇F(x)) ≤
F(x). A gradient descent iteration sets x(k+1) = x(k) − t(k)∇F(x(k)), where finding the step
size t(k) is a 1D problem. In each iteration F(x(k)) decreases, and the algorithm terminates
when ∇F(x(k)) ≈ 0.

start with initial guess x(0)

while stopping criterion not satisfied (e.g. while ‖∇F‖2 > tol)
take g(k)(t) = F(x(k) − t∇F(x(k)))
find step size t∗ through line search , e.g. t∗ = argmint≥0g(k)(t)
take x(k+1) = x(k) − t∗∇F(x(k))

The step size t∗ can be found through a

line search. Search for exact minimum t∗ = argmint≥0g(k)(t), which is a 1D minimization
problem. However, most of the time not worth the effort.

backtracking line search. Estimating the Taylor expansion gives F(x− t∇F(x)) ≈ F(x)−
t‖∇F(x)‖2 < F(x)− αt‖∇F(x)‖2 for t small enough and some α ∈ (0, 1). Start with t = 1

40

8.4. Unconstrained Optimization

and fix α ∈ (0, 1
2). Now decrease t until F(x− t∇F(x)) < F(x)− αt‖∇F(x)‖2, iterate until

”good decrease” is reached. This guarantees a decrease in F, i.e. F(x(k)) − F(x(k+1)) >

αt‖∇F(x(k))‖2.

Initialize t = 1, α ∈ (0, 1
2), β ∈ (0, 1)

while F(x− t∇F(x)) > F(x)− αt‖∇F(x)‖2

t← βt

Newton’s Method

If F is twice differentiable, differentiating and setting the right-hand size of its Taylor ex-
pansion to zero

F(x) ≈ F(x(k)) +∇F(x(k))(x− x(k)) +
1
2
(x− x(k))T HF(x(k))(x− x(k)),

i.e. the minimum of quadratic approximation, suggests

x(k+1) = x(k) − (HF(x(k)))−1∇F(x(k))

Intuitively, Newton’s method is faster because it ”knows” more about the function, because
it approximates up to second order terms. Near minimum, its convergence is quadratic and
therefore faster than gradient descent with linear convergence.

Comparison of Newton’s Method and Gradient Descent

In each iteration, Gradient descent computes a line search, Newton’s method computes
HF and solves an LSE. Newton’s method requires fewer iterations to converge, Gradient
descent typically converges on a larger region. Both can get stuck at local minima or saddle
points.

BFGS method

Instead of computing and solving the Hessian HF(x(k)), approximate by Bk such that Bk+1
is obtained from simple updates of Bk. This method is quasi Newton.

Newton’s method computes x(k+1)− x(k) = −(HF(x(k)))−1∇F(x(k)). We approximate HF(x(k))
as Bk using a secant-like condition as for Broyden’s method

Bk+1s(k) = Bk+1(x(k+1) − x(k)) = ∇F(x(k+1))−∇F(x(k)) = y(k).e

However, Bk+1 needs to be s.p.d (symmetric positive definite). Using a rank 2 update
Bk+1 = Bk + αuuT + βvvT with

u = y(k), v = Bks(k), α =
1

(y(k))Ts(k)
, β = − 1

(s(k))TBks(k)
,

the BFGS update and its inverse using the Shermann-Morrison Woodbury formula become

Bk+1 = Bk +
y(k)(y(k))T

(y(k))Ts(k)
−

Bks(k)(s(k))TBT
k

(s(k))TBks(k)
,

B−1
k+1 =

(
I − s(k)(y(k))T

(y(k))Ts(k)

)
B−1

k

(
I − y(k)(s(k))T

(s(k))Ts(k)

)
+

s(k)(s(k))T

(y(k))Ts(k)

L-BFGS does not require the storage of dense matrix Bk.

41

Appendix A

Appendix

A.1 Polynomials

polynomial definition recursion zeros

Lagrange Li on R? Li(t) =
n
∏
j=0
j 6=i

t−tj
ti−tj

tj i 6= j

Newton Ni on R? N0(t) = 1
Ni(t) = ∏i

j=0(t− tj)
tj i 6= j

Bernstein Bj on [0, 1] Bn
j (t) = (n

j)t
j(1− t)n−j

Chebychev Tn on [−1, 1] Tn(t) = arccos(n cos(t)) T0(t) = 1, T1(t) = t,
Tn+1(t) = 2tTn(t) −
Tn−1(t)

n, tj = cos
(

2j+1
2n π

)

Legendre Pn on [−1, 1] Pn ∈ Pn, Pn(1) = 1,∫ 1
−1 Pn(t)Pn−1(t)dt = 0

P0(t) = 0, P1(t) = t,
Pn+1(t) = 2n+1

n+1 tPn(t) −
n

n+1 Pn−1(t)

n on (−1, 1),
Gauss points

42

	Contents
	Computing with matrices and vectors
	Numerics and Error analysis
	Computational effort and Cancellation
	Cancellation
	Numerical stability

	Direct Methods for Solving LSE
	Solving LSE
	Exploiting structure when solving LSE
	Sparse linear Systems

	Direct Methods for solving Least Square Problems
	Least square solutions
	Normal equation methods
	Orthogonal Transformation Methods
	Singular Value Decomposition
	Total least squares
	Constrained least squares

	Filtering Algorithms
	Discrete Convolutions
	Discrete Fourier Transform (DFT)

	Data Interpolation in 1D
	Abstract Interpolation
	Piecewise linear Interpolation
	Global Polynomial Interpolation
	Splines

	Approximation of Functions in 1D
	Taylor Approximation
	Bernstein Approximation
	Global polynomial Approximation Theory
	Lagrange Approximation
	Chebychev Approximation
	Piecewise polynomial Lagrange interpolation
	Overview of estimates

	Numerical Quadrature
	Quadrature Formulas
	Polynomial Quadrature Formulas
	Gauss Quadrature
	Composite Quadrature

	Iterative Methods for Non-Linear Systems of Equations
	1D Iterative Methods
	Nonlinear systems of equations
	Newton's method
	Unconstrained Optimization

	Appendix
	Polynomials

