
Introduction to Machine Learning

ETH Zurich

Janik Schuettler
Marcel Graetz

FS18

Contents

Contents i

1 Overview 1

I Supervised Learning 1

2 Regression and Gradient Descent 1
2.1 Closed-form Solution: Linear Least Squares 1
2.2 Optimization: Gradient Descent 1
2.3 Non-linear Regression via Linear Regression 1
2.4 Model selection . 1
2.5 Cross validation . 2
2.6 Regularization . 2

3 Classification 2
3.1 Linear Classification . 2

3.1.1 Perceptron and Stochastic Gradient Descent . . 2
3.1.2 Support Vector Machines (SVM) 3

3.2 Feature Selection . 3
3.2.1 Greedy feature selection 3
3.2.2 Linear models 3

3.3 Non-linear Classification 3
3.3.1 Kernels . 3
3.3.2 k-Perceptron . 4
3.3.3 k nearest Neighbors (k-NN) 4
3.3.4 Kernelized SVM 4
3.3.5 Kernelized Regression 4

3.4 Class Imbalance . 4
3.5 Multi-class Problems . 5

4 Neural Networks 5
4.1 Training: Momentum SGD, Backpropagration 6
4.2 Initialization and Termination 6
4.3 Choosing parameters . 6
4.4 Regularization . 7
4.5 Invariances . 7
4.6 Convolutional Neural Networks (CNN) 7
4.7 ANNs vs. tanh-kernels 7

II Unsupervised Learning 7

5 Clustering: k-means 7

6 Dimension Reduction 8
6.1 Linear Dimension Reduction: PCA 8
6.2 Nonlinear Dimension Reduction 8

6.2.1 Kernel PCA . 8
6.2.2 Autoencoders . 8
6.2.3 Other . 8

6.3 Autoencoders vs. PCA 8
6.4 PCA vs. k-Means . 8

III Probabilistic modeling 9

7 Probabilistic Modeling, Bias-variance tradeoff 9
7.1 Parametric Estimation 9
7.2 Least Squares Regression = Gaussian Maximum Like-

lihood Estimation (MLE) 9
7.3 Bias Variance Tradeoff 9
7.4 Ridge Regression = Maximum A Posteriori (MAP) Es-

timation . 9
7.5 Examples for other Priors and Likelihood Functions . 10

8 Classification: Logistic regression 10
8.1 Regularized Logistic Regression 10
8.2 Kernelized Logistic Regression 11
8.3 Multi-class Logistic Regression 11
8.4 Comparison . 11

9 Bayesian Decision Theory 11
9.1 Asymmetric Costs . 11
9.2 Uncertainty Sampling 11

10 Generative Modeling 12
10.1 Discriminative vs. Generative Modeling 12
10.2 Naive Bayes Model . 12

10.2.1 Model Description 12
10.2.2 Gaussian NB vs. Logistic Regression 12
10.2.3 Issues with Naive Bayes models 12
10.2.4 Categorical Naive Bayes for discrete Features . 12
10.2.5 Discrete and categorical Features 12

10.3 Gaussian Bayes Classifier 13
10.3.1 Model Description 13
10.3.2 Fisher’s Linear Discriminant Analysis (LDA) . 13
10.3.3 LDA vs. Logistic regression 13
10.3.4 Gaussian Naive Bayes vs. General Gaussian

Bayers Classifiers 13
10.3.5 LDA vs. PCA . 13
10.3.6 Quadratic Discriminant Analysis (LDA) 13

10.4 Outlier Detection . 13
10.5 Avoiding Overfitting: Introducing Priors 13

11 Probabilistic Modeling of Unsupervised Learning: Latent
Variable Modeling 14
11.1 Gaussian Mixture Models 14
11.2 Expectation-Maximization Algorithm 14

11.2.1 Hard-EM Algorithms 14
11.2.2 Soft-EM Algorithm 15
11.2.3 Theory behind EM 15
11.2.4 EM vs. k-means 15

11.3 Avoiding Overfitting with GMMs 15
11.4 Gaussian-Mixture Bayes classifier 15
11.5 Semi-supervised Learning with GMMs 15
11.6 Outlook: Implicit generative Models 15

A Convex functions 15

Bibliography 16

i

1 Overview

I Supervised Learning
2 Regression and Gradient Descent
We try to fit a function to training data (learning) to make predic-
tions. Our goal is to learn real-valued mapping f : Rd → R.

The general model is

f (x) =
d

∑
i=1

wixi + b = wTx + b = w̃T x̃

with x̃ = (x1, ..., xd, 1) and w̃ = (w1, ..., wd, b).

Model error We measure goodness of a model (i.e. fit) using a
p-loss function lp(w, x, y),

R̂(w) =
n

∑
i=1

lp(w, x, y) =
n

∑
i=1
|yi − wT xi|p, p ≥ 1.

For p = 2, we get the least squares measure R̂(w) = ∑n
i=1(yi −

wT xi)
2.

Optimization problem We want to find the optimal weight vector

w∗ = argmin
w

(R̂) = argmin
w

n

∑
i=1

(yi − wT xi)
2.

2.1 Closed-form Solution: Linear Least Squares

Closed-form solution is w∗ = (XTX)−1XTy.

Complexity for solving in closed form is O(nd2 + d3).

2.2 Optimization: Gradient Descent

Theorem 2.1 (Gradient descent) Let f be convex with w∗ the global
minimizer. Assume ‖w1−w∗‖ ≤ D and ‖∇ f (w)‖ ≤ G ∀w ∈ Rd, BD(w∗).
If we choose ηt =

D
G
√

t
, then

f (wT)− f (w∗) ≤ GD√
T

.

Least squares function is convex. Gradient descent finds an optimal
solution with better complexity.

Complexity for one iteration of gradient descent is O(dn).

Problem: For low steps size very slow, but for high step size this can
diverge.

Adaptive step size Examples of how to update the step size adap-
tively.

Algorithm 1 Gradient Descent
1: w0 ∈ R . start with arbitrary w0
2: for t = 1, 2, . . . , T do
3: ∇wR̂(wt) = −2 ∑n

i=1(yi − wT
t xi)xi

4: wt+1 = wt − ηt∇R̂(wt) . ηt is the learning rate
5: return wT

• Line search: Optimizing step size every step

ηt ← argmin
η∈R+

R̂(wt − η∇R̂(wt))

wt+1 ← wt − ηt∇R̂(wt)

• Bold driver heuristic: If function decreases, increase step size,
else decrease step size

ηt+1 ←
{

cincηt, if R̂(wt+1) < R̂(wt)

cdecηt, if R̂(wt+1) > R̂(wt)

whut?

GD convergence Stop if either

• gradient is small enough, or

• difference in objective between subsequent iterations is small
enough.

2.3 Non-linear Regression via Linear Regression
Non-linear basis functions are used to fit non-linear data via linear
regression

f (x) =
d

∑
i=1

wiφi(x)

In 2D, φ could be φ(x) = (1, x1, x2, x2
1, x2

2, x1x2, . . .).

2.4 Model selection
We would like to choose the model that optimizes trade-off between
model complexity and training error, i.e. under- and overfitting data.
Mathematically, we try to minimize the true risk

R(w) = Ex,y[(y−wTx)2] =
∫

P(x, y)(y− wT x)2 dx dy,

w∗ = argmin
w

R(w)

However, we can only compute the empirical risk

R̂D(w) =
1
|D| ∑

(x,y)∈D
(y−wTx)2, ŵ = argmin

w
R̂train(w).

Theorem 2.2 (Law of large numbers (LLN)) R̂D(w)→ R(w) for any
fixed w almost surely as |D| → ∞.

iid assumnption assumes that the data set is generated indepen-
dently and identically distributed (iid), (xi, yi) ∼ P(X, Y).

Convergence of learning For learning via empirical risk minimiza-
tion to be successful, we need uniform convergence supw |R(w) −
R̂D(w)| → 0 for |D| → ∞, which is not implied by LLN, but de-
pends on model class.

Splitting data set Do not test a model on the training data, because

E[R̂train(ŵ)] < E[R(ŵ)].

Best practice is to split the data set into a training set Dtrain and a
testing set Dtest. Optimize w on Dtrain

w = argmin
w

R̂train(w)

and evaluate it on Dtest

R̂test(ŵ) =
1

|Dtest| ∑
(x,y)∈Dtest

(y− ŵTx)2.

Then EDtrain ,Dtest [R̂Dtest (ŵDtrain)] = EDtest [R(ŵDtrain)].

1

2.5 Cross validation
Test error R̂test is itself random. Variance usually increases for more
complex models. Idea is to use and average over multiple test sets
to reduce the bias. Note that this only works for i.i.d. data.

Algorithm 2 Model selection with cross validation
1: for each candidate model m do
2: for i = 1 : k do
3: D = D(i)

train] D(i)
validation . split data set

4: ŵ = argminw R̂(i)
train(w) . train model

5: R̂(i)
m = R̂(i)

val(ŵi) . estimate error

6: m̂ = argminm
1
k ∑k

i=1 R̂(i)
m . select model

Splitting test sets may be obtained by different procedures.

• Monte-Carlo cross-validation: Pick training set of given size
uniformly at random, validate on remaining points, estimate
prediction error by averaging the validation error over multiple
random trials.

• k-fold cross validation: Partition the data into k folds, train on
(k− 1) folds, evaluating on remaining fold, estimate prediction
error by averaging the validation error obtained while varying
the validation fold. This is the default.

Number of folds k is hard too choose.

• too small: risk of overfitting to test set, using too little data for
training, risk of underfitting to training set

• too large: in general, better performance (k = n is fine), but
higher computational complexity

• in practice mostly k = 5 or k = 10

2.6 Regularization
For non-linear models, there might not be a natural order of com-
plexity like with monomials, i.e. higher order monomial account
for more complex models. Too complex models often manifest in
large weights. The idea of regularization is to keep models simple
by punishing large weights.

Ridge regression problem adds the term λ‖w‖2
2

w∗ = argmin
w

(R̂) + λ‖w‖2
2 = argmin

w

n

∑
i=1

(yi − wT xi)
2 + λ‖w‖2

2.

for some λ ∈ R. Using the homogeneous representation, the con-
stant term is not being regularized. λ balances

λ→ ∞, the optimization problem tries to minimize w only,

λ→ 0, optimization problem with no regularization.

Closed-form solution is w∗ = (XTX + λI)−1XTy. Matrix XTX + λI
is always invertible and better conditioned.

Renormalizing data ensures that each feature has zero mean and
unit variance, because scaling does matter for regularization.

x̃i,j = (xi,j − µ̂j)/σ̂2
j , where

µ̂j =
1
n

n

∑
i=1

xi,j σ̂2
j =

1
n ∑

i
(xi,j − µ̂j)

2

Algorithm 3 Gradient Descent with regularization
1: w0 ∈ R . start with arbitrary w0
2: for t = 1, 2, . . . , T do
3: ∇wR̂(wt) = −2 ∑n

i=1(yi − wT
t xi)xi

4: wt+1 = wt(1− 2ληt)− ηt∇R̂(wt) . ηt is the learning rate
5: return w

Choosing λ is mostly done using cross-validation for logarithmi-
cally spaced λ ∈ {10−6, 10−5, . . . , 105, 106}.

3 Classification
We would like to assign data points X a label Y, i.e. Y is discrete.

3.1 Linear Classification
Linear Classification seems restrictive, but using more dimensions
and the right features often works quite well. Prediction is typically
efficient.

Loss functions We want to find the optimal weight vector w∗ =
argminw ∑n

i=1 l(w, xi, yi). Possible loss-functions are

• 0/1-loss, minimizing the number of errors, an intractable (non-
convex) loss-function

l(w, xi, yi) = l0/1(w, xi, yi) =

{
1 if yi 6= sign(wTxi)

0 else
,

• perceptron-loss, a tractable surrogate-loss function

l(w, xi, yi) = lp(w, xi, yi) = max(0,−yiw
Txi),

• hinge-loss (SVM)

l(w, xi, yi) = lh(w, xi, yi) = max(0, 1− yiw
Txi).

was bedeutet immer dieses traceable? Du meinst tractable?

3.1.1 Perceptron and Stochastic Gradient Descent
Perceptron optimization problem

w∗ = argmin
w

n

∑
i=1

lp(w, xi, yi) = argmin
w

n

∑
i=1

max(0,−yiw
Txi).

Perceptron Gradient

∇wR̂p(w) = − ∑
i:yi 6=sign(wTxi)

yixi

Stochastic Gradient Descent (SGD) picks uniformly and at ran-
dom m data points to compute the gradient (mini-batch SGD)

∇R̂(w) =
1
n ∑

I
∇l(w; xI , yI) = EI∼Uni f {1,...,n})[∇l(w; xI , yI)].

Algorithm 4 Stochastic Gradient Descent
1: w0 ∈ R . start with arbitrary w0
2: for t = 1, 2, . . . do
3: pick (x′i , y′i)

m
i=1 ∈ D . Random data points

4: wt+1 = wt − ηt∇l(wt, x′, y′)
5: return w

2

Algorithm 5 Perceptron with Stochastic Gradient Descent
1: w0 ∈ R . start with arbitrary w0
2: for t = 1, 2, . . . do
3: pick it ∼ Unif{1, . . . , n} . one random data point
4: if yit 6= sign(wT

t xit) then . Perceptron gradient
5: wt+1 = wt + ηtyit xit
6: else
7: wt+1 = wt

Robbins-Monro Conditions keep the learning rate ηt such that the
algorithm will not terminate before converging, i.e. ∑t ηt = ∞, but
with bound variance, i.e. ∑t η2

t < ∞. These conditions are sufficient
for convergence. For example ηt = 1/t or ηt = min(c1, c2/t).

Remark 3.1 This is the perceptron algorithm. (Says probelm set 3.)

Adaptive learning rates are used by algorithms such as AdaGrad,
RMSProp, Adam.

Theorem 3.2 If the data is linearly separable, the Perceptron will obtain a
linear separator.

SGD convergence criteria Stop if either

• a fixed number of iterations have passed,

• GD conditions would suggest convergence (occasionally, say
every n-th iteration, compute full objective value/ gradient
magnitude),

• error on separate validation data set is small enough (direct
monitoring). This is a special form of regularization called
early stopping.

3.1.2 Support Vector Machines (SVM)
The hinge-loss encourages not only correct classification, but correct
classification with maximal margin to the decision boundary.

Can this lead to non-optimal decisions in case of e.g. separability?

SVM optimization problem

w∗ = argmin
w

n

∑
i=1

max(0, 1− yiw
Txi) + λ‖w‖2

2

Theorem 3.3 SVM finds solution with max margin to decision boundary.

Choosing λ is mostly done using cross-validation. Note that in-
stead of using the hinge-loss for validation, one would use the target
performance metric (e.g. the number of mistakes).

3.2 Feature Selection
In many high-dimensional problems, we may prefer not to work
with potentially available features, because of

• interpretability and generalization: simple models may be un-
derstood and generalize better to more complex tasks,

• storage/ computation/ cost: it is unnecessary to compute with
and store unused or less important features or features that
depend upon another. Also, acquiring features might be ex-
pensive, so one might prefer not to acquire a feature if it is not
needed.

3.2.1 Greedy feature selection
Greedily add or remove features to maximize cross-validated predic-
tion accuracy, mutual information, or other notions of informative-
ness.

For a set of features V = {1, . . . , d}, define a cost function L̂ :
P(V) → R to be the cross-validation error using features in subsets
of V only.

Comparison Forward is usually fast (if few relevant features), back-
ward can handle ”dependent” features.

Problems Both algorithms are computationally expensive (need to
retrain models many times for different feature combinations) and

Algorithm 6 Greedy forward selection
1: S = ∅, E0 = ∞
2: for t = 1 : d do
3: si = argminj∈V\S L̂(S ∪ {j}) . Find best element to add

4: Ei = L̂(S ∪ {si}) . Compute error
5: if Ei > Ei−1 then
6: break
7: else
8: S← S ∪ {si}
9: return S

Algorithm 7 Greedy backward selection
1: S = V, Ed+1 = ∞
2: for t = d : 1 : −1 do
3: si = argminj∈S L̂(S\{j}) . Find best element to remove

4: Ei = L̂(S\{si}) . Compute error
5: if Ei > Ei+1 then
6: break
7: else
8: S← S\{si}
9: return S

can be suboptimal. As an extreme counter example consider a set-
ting in which all features are uninformative on their own, but infor-
mative altogether.

3.2.2 Linear models
We want to solve the learning and feature selection problem simulta-
neously via a single optimization.

Sparse regression The key idea is to replace feature selection with
setting unimportant features to 0, i.e. working with sparse feature
representations, encoded within the pseudo-norm ‖w‖0 = number
of non-zero entries in w. The 0-norm penalty encourages coefficients
to be exactly 0 and therefore automatic feature selection, however,
the optimization problem is hard to solve. We instead use the 1-
norm ‖·‖1 for optimization to keep the convex optimization prob-
lem.

L1-regularized regression problem (Lasso)

w∗ = argmin
w

n

∑
i=1

(yi −wTxi)
2 + λ‖w‖1

L1-SVM optimization problem

w∗ = argmin
w

n

∑
i=1

max(0, 1− yiw
Txi) + λ‖w‖1

Comparison FW/BW applies to any prediction method but takes
time. L1-Regularization is faster (training and feature selection hap-
pen jointly) but only works for linear models.

3.3 Non-linear Classification

Theorem 3.4 (Representer Theorem) The normal to the optimal hyper-
plane lives in the span of the data ŵ = ∑n

i=1 αiyixi.

Reformulation using inner-products xT
i xj

R̂(α) = min
α1:n

n

∑
i=1

max{0,−
n

∑
j=1

αjyiyjx
T
i xj︸ ︷︷ ︸

=yiwT xi

}

3.3.1 Kernels
Kernel-trick Express problem such that it only depends on in-
ner products and replace these inner products with kernels xT

i xj →
k(xi, xj).

3

Definition 3.5 (Kernel) A kernel is a function k : X × X → R sat-
isfying symmetry and positive semi-definiteness, i.e. for any n, any set
S = {x1, . . . , xn} ⊆ X, the kernel (Gram) matrix

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

is positive semi-definite.

Theorem 3.6 (Kernel Composition) Let k1 : χ × χ → R, k2 : χ ×
χ→ R be defined on data space χ. Then the following are valid kernels

• k(x, x′) = k1(x, x′) + k2(x, x′)

• k(x, x′) = k1(x, x′)k2(x, x′)

• k(x, x′) = ck1(x, x′) for c > 0

• k(x, x′) = f (k1(x, x′)), where f is a polynomial with positive coeffi-
cients or the exponential function.

Theorem 3.7 (Mercer’s Theorem) Let X be a compact subset of Rn and
k : X× X → Rn a kernel function. Then one can expand k in a uniformly
convergent series of bounded functions φ such that

k(x, x′) =
∞

∑
i=1

λiφi(x)φi(x′).

Kernels in Rd

• Linear Kernel: k(x, x′) = xTx′

• Polynomial Kernel: k(x, x′) = (xTx′ + 1)d implicitly repre-
sents all monomials of up to degree m. In d-D, there are (d+m

m)
such monomials.

• Gaussian/ RBF Kernel: k(x, x′) = exp(−‖x− x′‖2
2/h2) maps

to infinite dimensional space.

• Laplacian Kernel: k(x, x′) = exp(−‖x− x′‖1/h)

• ? Kernel: k(x, x′) = xTMx′ for symmetric positive definite
matrix M.

• ANOVA Kernel: k(x, x′) = ∑d
i=1 ki(x(i), x′(i)) with ki(x, x′) =

exp(−(x− x′)2/h2
i).

3.3.2 k-Perceptron
Kernelized perceptron optimization problem

argmin
α

n

∑
i=1

max{0,−yiα
Tki} = min

α1:n

n

∑
i=1

max{0,−
n

∑
j=1

αjyiyjk(xi, xj)

for ki = (y1k(xi, x1), . . . , ynk(xi, xn))T .

Algorithm 8 Kernelized Perceptron
1: α1 = . . . = αn = 0
2: for t = 1, 2, . . . do
3: Pick it ∼ Unif{1, . . . , n} . Random data points

4: ŷ = sign
(

∑n
j=1 αjyjk(xj, xit)

)
. Predict

5: if yit 6= ŷ then . Perceptron gradient
6: αi ← αi + ηt

7: ŷ = sign(∑n
j=1 αjyjk(xj, x)) . Prediction for x

3.3.3 k nearest Neighbors (k-NN)
k-nearest Neighbor Label depending on the k nearest neighbor of
all data points

y = sign

(
n

∑
i=1

yi{xi among k nearest neighbors of x}
)

.

Choose k using cross validation.

Comparison of Perceptron and k-NN For k-NN, no training is
necessary, but it depends on all data, which may render it inefficient.

The kernelized perceptron may have improved performance due to
optimized weights, can capture ”global trends” with suitable kernels,
and it depends on wrongly classified examples only, but training
requires optimization.

Parametric vs nonparametric Models Parametric models have fi-
nite set of parameter (e.g. linear regression, linear perceptron), non-
parametric models grow in complexity with the size of the data (e.g.
kernelized perceptron, k-NN) and are thus potentially much more
expressive and computationally expensive. Kernels provide a princi-
pled way of deriving non-parametric models from parametric ones.

3.3.4 Kernelized SVM
Kernelized SVM optimization problem

argmin
α

n

∑
i=1

max(0, 1− yiα
Tki) + λαTDyKDyα

for ki = (y1k(xi, x1), . . . , ynk(xi, xn))T and Dy = diag(y1, . . . , yn).

3.3.5 Kernelized Regression
Kernelized Linear Regression optimization problem

argmin
α
‖αTK− y‖2

2 + λαTKα

with closed form solution α∗ = (K + λI)−1y and predictor f (x) =
∑n

i=1 αik(xi, x).

3.4 Class Imbalance

True label

Predicted

Positive Negative ∑ =
Positive TP FP p+
Negative FN TN p−
∑ = n+ n−

T

P

1 0
1 TP FP p+
0 FN TN p−

n+ n−

Metrics to measure goodness of fit

TP + TN
TP + TN + FP + FN

=
TP + TN

n
(Accuracy)

TP
TP + FP

=
TP
p+
∈ [0, 1] (Precision)

TP
TP + FN

=
TP
n+
∈ [0, 1] (Recall (TPR))

FP
TN + FP

=
FP
n−
∈ [0, 1] (False positive rate (FPR))

2TP
2TP + FP + FN

=
2

TP+FP
TP + TP+FN

TP
(F1 Score)

Accuracy is often not meaningful for imbalanced data set, because
it may prefer certain mistakes over others (trade false positives and
false negatives). Minority class instances contribute little to the em-
pirical risk and may be ignored during optimization.

Upsampling Repeat data points from minority class (possibly with
small random perturbations) to obtain balanced data set. This method
makes us of all data, but is slower and adding perturbations requires
arbitrary choices.

Downsampling Remove training examples from the majority class
(e.g. uniformly at random) such that the resulting data set is bal-
anced. This method is faster, because it reduces the test set size, but
available data is wasted and information about the majority class.

Cost sensitive classification Modify Perceptron/ SVM by using a
cost-sensitive loss function lCS(w; x, y) = cyl(w; x, y) to take class

4

imbalance into account.

lCS−P(w; x, y) = cy max(0,−ywTx) (Perceptron)

lCS−H(w; x, y) = cy max(0, 1− ywTx) (SVM)

with parameters c+, c− > 0.

Receiver operator characteristic (ROC) curve draws true positive
rate vs. false positive rate.

Area under the curve of ROC or Precision Recall as ability of a
classifier to provide imbalanced classification.

Theorem 3.8 Algorithm 1 dominated algorithm 2 in terms of ROC curve
if and only if algorithm 1 dominates algorithm 2 in terms of precision recall
curves.

3.5 Multi-class Problems
One-vs-All Solve c binary classifiers for each class. Classify using
the classifier with the largest confidence, i.e. predict

ŷ = argmax
i∈{1,...,c}

w(i)T
x.

One-vs-All discussion One-vs-All only works well if classifiers pro-
duce confidence scores on the same scale. Individual binary classi-
fiers see imbalanced data even if the whole data set is balanced. One
class might not be linearly separable from all other classes.

One-vs-One Train c c−1
2 binary classifiers, one for each pair of classes

i, j. Apply voting scheme, class with highest number of positive pre-
diction wins.

Discussion One-vs-One One-vs-One does not rely on confidence,
but is slower than One-vs-All.

Multi-class methods Maintain c weight vectors w(1), . . . , w(c), one

for each class, and predict ŷ = argmaxi w(i)T
x. Given each data

point (x, y), we want to archive that

w(y)x > max
i 6=y

w(i)Tx + 1. (∗)

Multi-class hinge-loss

lMC−H(w(1:c); x, y) =

max

(
0, 1 + max

j∈{1,...,y−1,y+1,...,c}
w(j)T x−w(y)T x

)

∇w(j) lMC−H(w(1:c); x, y) =

0 (∗) or j /∈ {y, ŷ}
−x not (∗) and j = y
x not (∗) and j = ŷ

Confusion Matrices are often used to evaluate multi-class classi-
fiers.

True label
Cat Dog Elefant

Predicted
Cat 5 2 0
Dog 3 7 0
Elefant 1 0 6

4 Neural Networks
What are good features?

Neural Networks optimization problem

w∗ = argmin
w,θ

n

∑
i=1

l(yi;
m

∑
j=1

wjφ(xi, θj))

Feature maps, activation function For example φ(x, θ) = ϕ(θT x)

Activation functions

• Sigmoid ϕ(z) = 1
1+exp(−z)

• Tanh ϕ(z) = tanh z

• ReLU ϕ(z) = max(0, z)

Artificial Neural Networks (ANN) are functions of the form

f (x; w, θ) =
m

∑
j=1

wj ϕ(θ
T
j x).

5

Algorithm 9 Forward Propagation

1: v(0) = x . Input layer
2: for each hidden layer l = 1 : L− 1 do
3: z(l) = W(l)v(l−1)

4: v(l) = ϕ(z(l))
5: f = W(L)v(L−1)

6: y = f . Prediction for regression, or
7: y = sign(f) . Prediction for classification, or
8: y = argmaxj fj . Prediction for multiclass classification

Theorem 4.1 Let σ be any continuous sigmoidal function. Then finite
sums of the form

G(x) =
N

∑
j=1

αjσ(yT
i x + θi)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there
is a sum, G(x), of the above form, for which

|G(x)− f (x)| < ε ∀x ∈ In.

Aber solche Funktionen kriegen wir doch nicht aus neuronalen Net-
zwerken, oder?

4.1 Training: Momentum SGD, Backpropagration
Training Given data set D = {(x1, y1), . . . , (xn, yn)}, we want to
optimize weights W = (W(1), . . . , W(L)) using any loss function
l(W; y, x) (Perceptron loss, multi-class hinge loss, squared loss, etc.)

W∗ = argmin
W

n

∑
i=1

l(W; yi, xi).

When predicting multiple outputs at the same time, usually define
loss as sum per-output losses

l(W; y, x) =
p

∑
i=1

li(W; yi, x).

This optimization problem is not convex.

Algorithm 10 SGD for ANNs
1: Initialize weights W
2: for t = 1, 2, . . . do
3: Pick data point (x, y) ∈ D uniformly at random
4: Take step in negative gradient direction
5: W = W− ηt∇Wl(W; y, x)

Computing the gradient To compute ∇wl(W; y, x), we use back-
propagation exploiting the chain-rule and the weight-specific gradi-
ents ∇wi,j l(W; y, x).

Algorithm 11 Backpropagation
1: for the output layer do
2: δ(L) = Dl(f) = (l′1(f1), . . . , l′p(fp)) . compute ”error” True?

3: ∇W(L) l(W; y, x) = δ(L)v(L−1)T . Compute gradient matrix
4: for each hidden Layer l = L− 1 : −1 : 1 do
5: δ(l) = ϕ′(z(l))� (W(l+1)Tδ(l+1)) . compute ”error”
6: ∇W(l) l(W; y, x) = δ(l)v(l−1)T . Compute gradient

Learning rate often initially chosen with a fixed (small) learning
rate and decreased slowly after some iterations, e.g. ηt = min(0.1, 100/t).
It is also possible to monitor the ratio of weight change (gradient) to
weight magnitude. If the ratio is too small, increase learning rate,
otherwise decrease learning rate.

Learning with momentum can help to escape local minima by not
only moving into direction of gradient, but also in direction of last

weight update

a = m · a + ηt∇wl(W; y, x),

W = W− a,

where m denotes a parameter of friction. This method can help to
prevent oscillations.

Weight-space symmetries cause ’degenerate’ local minima, i.e. mul-
tiple local-minima can be equivalent in terms of input-output map-
ping.

Derivatives of activation functions

• ϕ′(z) = (1
1+e−z)′ = ez

(1+ez)2 = (1− ϕ(z))ϕ(z). Properties: Dif-

ferentiable and non-zero everywhere, but ϕ′(z) ≈ 0 almost
everywhere except for z ≈ 0.

• ϕ′(z) = (max(0, z))′ =

{
1 if z > 0
0 if z < 0

. Properties: not differ-

entiable at 0 (in practice just set to 0, doesn’t really matter),
efficient and > 0 in R+.

wie bringen wir dieses concept am besten unter? Wie oder wo?

4.2 Initialization and Termination
Initialization of weights Matters, because problem is non-convex.
Random initialization usually works well, e.g. wi,j ∼ N (0, 0.1),
wi,j ∼ N (0, 1/

√
|Layerl+1|). However, incorrect initialization can

lead to bad results. Might want to repeat training multiple times to
avoid getting stuck in a poor local optimum. Less deep architectures
are more prone to get stuck in a local optimum.

Termination

4.3 Choosing parameters
In principle, one could use cross validation to compare models, how-
ever, training ANNs is usually expensive.

Choosing parameters like number of units/ layers/ activation func-
tions/ learning rate/ ...

Type of activation function Sigmoid and tanh are differentiable
and were popular in the past. ReLUs are currently used extensively.
They are not differentiable (not a problem), fast to compute and their
gradients do not vanish (important).

Number of hidden layers [1] In most tasks, one hidden layer is
sufficient. More generally:

• 0: only capable of representing linear separable functions or
decisions.

• 1: Can approximate any function that contains a continuous
mapping from one finite space to another.

• 2: Can represent an arbitrary decision boundary to arbitrary ac-
curacy with rational activation functions and can approximate
any smooth mapping to any accuracy.

Wo genau ist der Unterschied zwischen 1 und 2?

Number of hidden units [1] The optimal size of the hidden layer
is usually between the size of the input and size of the output layers.
Some rules of thumb are

• The number of hidden neurons should be between the size of
the input layer and the size of the output layer.

• The number of hidden neurons should be 2/3 the size of the
input layer, plus the size of the output layer.

• The number of hidden neurons should be less than twice the
size of the input layer.

An upper bound for the number of hidden units is given by

Nhidden units ≤
Nsample

α(Ninput + Noutput)
, 2 ≤ α ≤ 10.

Woher kommt das?

6

Regularization method

Learning rate schedule

Weight initialization

Number of convolution/ pooling layers

4.4 Regularization
Neural networks are prone to overfitting due to their large number
of parameters.

Early stopping doesn’t let the neural net converge. Monitor predic-
tion performance on validation set and stop training once validation
error starts to increase.

Regularization adds the usual regularization term to the optimiza-
tion problem

W∗ = argmin
W

n

∑
i=1

l(W; yi, xi) + λ‖W‖2
2.

Dropout regularization Randomly ignore hidden units during each
iteration of SGD with probability p. After the training, half the
weights to compensate.

4.5 Invariances
Predictions should be unchanged under some transformations of the
data, e.g. translation, rotation, scale, pitch, speed, etc. Invariances
can be learned from data: SIFT (scale invariant feature transforma-
tion), Ceptum (speech recognition).

Encourage learning of invariances e.g. by

• augmentation of the training set

• special regularization terms

• invariance built into pre-processing

• implement invariance into structure of ANN (e.g. CNN)

Hat er dazu mehr gesagt?

4.6 Convolutional Neural Networks (CNN)
CNNs are ANNs for specialized applications like image recogni-
tion. They are robust against transformations (translation, rotations,
scaling). The hidden layer(s) closest to the input layer shares param-
eters: each hidden unit only depends on all ”closeby” inputs (e.g.
pixels), and weights constrained to be identical across all units on
the layer. This reduces number of parameters and enourages robust-
ness against (small amounts of) translation. The weights can still be
optimized via backprobagation.

Output dimension of CNNs when applying m different f × f filters
to an n× n image with padding p and stride s is given by

L =
n + 2p− f

s
+ 1.

Pooling aggregates several units to decrease the with of the network
and hence the number of parameters. Usually, either average or
maximum values are considered.

4.7 ANNs vs. tanh-kernels
Class of functions that can be modeled with ANNs or tanh-kernels
are the same. This does not mean the trained models are the same.
Kernel optimization problems are linear and hence convex, whereas
the ANN optimization problem optimizes θ and w, which makes
it non-convex. Robustness for kernels that ANNs do not exhibit .
However, ANNs have more degrees of freedom. Noisy data better
with kernels because of their robustness.

II Unsupervised Learning
Learning without labels. Typically used for exploratory data analy-
sis, e.g. finding patterns, visualizations.

5 Clustering: k-means
Unsupervised analog to classification.

Clustering Given data points, group them into clusters such that
similar points are in the same cluster and dissimilar points are in
different clusters. Points are typically represented either in (high-
dimensional) Euclidean space or with distances specified by a metric
or kernel. Clustering is related to anomaly/ outlier detection.

Standard approaches to clustering

• Hierarchical clustering: Build a tree (bottom-up or top-down),
representing distances among data points. Examples include
single-, average-linkage clustering.

• Partitional approaches: Define and optimize a notion of ”cost”
defined over partitions. Examples include spectral clustering,
and graph-cut based approaches.

• Model based approaches: Maintain cluster ”models” and in-
fer cluster membership (e.g. assign each point to closest cen-
ter). Examples include k-means, and Gaussian mixture mod-
els.

k-means optimization problem assumes points are in Euclidean
space xi ∈ Rd, represents clusters as centers µj ∈ Rd, and each point
is assigned to its closest center (Voronoi partition). The goal is to
minimize the average squared distance, i.e.

R̂(µ) = R̂(µ1, . . . , µk) =
n

∑
i=1

d(xi, µ) =
n

∑
i=1

min
j∈{1,...,k}

‖xi − µj‖2
2,

µ̂ = argmin
µ

R̂(µ).

This optimization problem is non-convex and NP-hard.

Algorithm 12 k-means algorithm (Lloyd’s heuristic)

1: µ(0) = {µ(0)
1 , . . . , µ

(0)
k } . Initialize cluster centers

2: while not converged, t = 1, t = t + 1 do

3: zi = argminj∈{1,...,k}‖xi − µ
(t−1)
j ‖2

2
4: . Assign each point xi to closest center

5: µ
(t)
j = 1

nj
∑i:zi=j xi

6: . update center as mean of assigned data points

Properties and challenges of k-means Guaranteed to monotoni-
cally decrease average squared distance in each iteration. It con-
verges to a local minimum. Complexity per iteration is O(nkd).

Initializing k-means different approaches: multiple random restarts,
farthest points heuristic (often works well, but prone to outliers),
seeding with k-means++.

Algorithm 13 k-means++ algorithm for initializing centers

1: i1 ∑ Unif{1, . . . , n}
2: µ1 = xi1
3: for j = 2 : k do

4: ij = i with probability d(xi ,µ1:j−1)
2

∑n
i=1 d(xi ,µ1:j−1)2 =

min1≤l≤j−1‖xi−µl‖2

∑n
i=1 d(xi ,µ1:j−1)2

5: µj = xij

6: Continue with standard k-means algorithm

Model selection (i.e. determining the number of clusters) is diffi-
cult. Approaches include heuristic quality measures, regularization
(favor ”simple” models with few parameters by penalizing complex
models), information theoretic basis (tradeoff between robustness
(stability) and informativeness). One heuristic for determining k is
to pick k such that increasing k leads to negligible decrease in loss.

Challenges with k-means Generally, the algorithm only converges
to local minimum (dependence on initialization), the number of it-
erations needed may be exponential (however, practically not often),

7

determining the number of clusters k is difficult, and models of arbi-
trary shape cannot be modeled well.

Don’t do crossvalidation, because there is a strong correlation be-
tween train accuracy and test/validation accuracy. Explain, please.

Nonlinear k-means Applying k-means on kernel-principal compo-
nents is sometimes called Kernel-k-means or Spectral Clustering.

6 Dimension Reduction
Unsupervised analog to regression. Given data set D = {x1, . . . , xn},
obtain ”embedding” (low-dimensional representation) z1, . . . , zn ∈
Rk.

Typical approaches Assume D = {x1, . . . , xn} ⊆ Rd, obtain map-
ping f : Rd → Rk such that k � d. One can distinguish linear
dimension reduction f (x) = Ax and nonlinear dimension reduction,
parametric and non-parametric.

6.1 Linear Dimension Reduction: PCA
PCA optimization problem

(W∗, z∗1 , . . . , z∗n) = argmin
n

∑
i=1
‖Wzi − xi‖2

2,

such that W ∈ Rd×k is orthogonal and z1, . . . , zn ∈ Rk.

Theorem 6.1 (PCA) Let Σ = 1
n ∑n

i=1 xixT
i = ∑d

i=1 λivivT
i , λ1 ≥ . . . ≥

λd ≥ 0 be the empirical covariance. Assume that µ = 1
n ∑i xi = 0. The

linear dimension reduction optimization problem is equivalent to

W∗ = argmax WTΣW, z∗i = (W∗)Txi,

and its solution is given by

W∗ = (v1| . . . |vk), z∗i = (W∗)Txi.

Proof?

PCA via SVD From SVD it follows that X = USVT , X ∈ Rn×d,
U ∈ Rn×n and V ∈ Rd×d orthogonal, S ∈ Rn×d diagonal. The top k
principal components are the first k columns of V and Σ = VSTSVT

What?

6.2 Nonlinear Dimension Reduction

6.2.1 Kernel PCA

Theorem 6.2 For w∗ there exist αi such that w∗ = ∑n
i=1 αixi.

1D Kernel PCA The 1D Kernel-PCA problem requires solving

α∗ = argmax
αTKα=1

αTKTKα

with closed-form solution from the eigendecomposition of K = ∑n
i=1 λ1vivT

i ,
λ1 ≥ . . . ≥ λd ≥ 0

α∗ =
1√
λ1

v1

Kernel PCA For general k ≥ 1, the Kernel Principal Components
are given by α(1), . . . , α(k) ∈ Rn, where

α(i) =
1√
λi

vi

is obtained from K = ∑n
i=1 λivivT

i , λ1 ≥ . . . λd ≥ 0. Given this, a
new point x is projected as z ∈ Rk

zi =
n

∑
j=1

α
(i)
j k(x, xj).

Notes on PCA

• Complexity grows with the number of data points.

• Cannot easily ”explicitly” embed high-dimensional data (un-
less we have an appropriate kernel).

• Kernel-PCA corresponds to applying PCA in the feature space
induced by the kernel k.

• Can be used to dissolve non-linear feature maps in closed form.
This can be used as inputs, e.g. SVMs given ”multilayer SVMs”
was heisst das?

• May want to center the kernel E = 1
n [1, . . . , 1][1, . . . , 1]T , K′ =

K−KE− EK + EKE ... und das?.

6.2.2 Autoencoders
Idea is to learn the identity function x ≈ f (x; θ) = f2(f1(x; θ1); θ2),
where f1 : Rd → Rk is the encoder and f2 : Rk → Rd is the de-
coder.

Neural network autoencoders are ANNs where there is one output
unit for each of the d input units and the number k of hidden units is
usually smaller than the number of inputs (compression effect). The
goal is to optimize the weights such that the output agrees with the
input, for example by minimizing the square loss.

Training autoencoders For example, minimize the square loss

min
W

n

∑
i=1
‖xi − f (xi; W)‖2

2

using SGD (backpropagation). Initialization matters and is challeng-
ing, c.f. work on pretraining, e.g. layerwise training of restricted
Boltzmann machines.

6.2.3 Other
There are other nonlinear methods like locally linear embedding
(LLE) or multi-dimensional scaling.

6.3 Autoencoders vs. PCA
If the activation function is the identity φ(z) = z, then fitting a NN
autoencoder is equivalent to PCA.

6.4 PCA vs. k-Means
After reformulating the optimization problems, both differ mostly in
constraints.

PCA Problem

(W, z1, . . . , zn) = argmin
n

∑
i=1
‖Wzi − xi‖2

2

where W ∈ Rd×k is orthogonal, z1, . . . , zn ∈ Rk.

k-Means Problem

(W, z1, . . . , zn) = argmin
n

∑
i=1
‖Wzi − xi‖2

2

where W ∈ Rd×k arbitrary, z1, . . . , zn ∈ Ek and Ek = {(1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1)T}
is the set of unit vectors in Rk.

8

III Probabilistic modeling
General approach to probabilistic modeling

(i) Start with statistical assumption on data, mostly data points
modeled as i.i.d. (can be relaxed).

(ii) Choose likelihood function (e.g. Gaussian, student-t, logistic,
exponential). This defines the loss function.

(iii) Choose a prior (e.g. Gaussian, Laplace, exponential). This
defines the regularizer.

(iv) Optimize for MAP parameters.

(v) Choose hyperparameters (i.e., variance) through cross-validation.

(vi) Make predictions via Bayesian Decision Theory.

7 Probabilistic Modeling, Bias-variance tradeoff
We would like to take a statistical perspective on supervised learning
and statistically model the data, e.g. quantify uncertainty or express
prior knowledge/ assumptions about the data. Many of the previ-
ous approaches from part 1 can be interpreted as fitting probabilistic
models.

Fundamental assumption: i.i.d Our data is independently and
identically distributed, i.e. (xi, yi) ∼ P(X, Y).

Problem formulation We would like to identify a hypothesis h :
X → Y that minimizes the prediction error (risk)

R(h) =
∫

P(x, y)l(y; h(x))dx dy = Ex,y[l(y; h(x))]

defined in terms of a loss function.

Risk In least squares regression, the risk is R(h) = Ex,y[(y− h(x))2]

7.1 Parametric Estimation
Bayes’ optimal predictor for the squared loss assuming we knew
P(X, Y). Minimizing least squares risk leads to the hypothesis h∗

given by the conditional mean

h∗(x) = E[Y|X = x]. (Bayes optimal predictor)

Estimating conditional distributions We know which h∗ minimizes
the risk, thus one strategy for estimating a predictor from training
data is to estimate the conditional distribution

P̂(Y|X) (Conditional distribution)

and then for a test point x to predict the label

ŷ = Ê[Y|X = x] =
∫

yP̂(y|X = x)dy.

Parametric Estimation P̂(Y|X, θ) is a common approach. Choose a
particular parametric form

P̂(Y|X, θ) (Parametric cond. distribution)

with parameters θ, then optimize the parameters. This is done for
example by Maximum Likelihood estimation.

7.2 Least Squares Regression = Gaussian Maximum Like-
lihood Estimation (MLE)

Maximum (conditional) Likelihood Estimation is a method for
optimizing the parameters, i.e.

θ∗ = argmax
θ

P̂(y1, . . . , yn|xi, . . . , xn, θ)
i.i.d
= argmax

θ

n

∏
i=1

P̂(yi|x1, θ) ⇐⇒

θ∗ = argmax
θ

log P̂(yi:n|xi:n, θ) = argmax
θ

n

∑
i=1

log P̂(yi|xi, θ)

MLE = Least squares With the assumption of Gaussian noise, i.e.
yi ∼ N (wTxi, σ2) ≡ yi = wTxi + εi, εi ∼ N (0, σ2), maximizing the
likelihood is equivalent to least squares estimation

argmax
w

P(y1, . . . , yn|x1, . . . , xn, w) = argmin
w

n

∑
i=1

(yi −wTxi)
2.

MLE for i.i.d. Gaussian noise Suppose H = {h : X → R} is a
class of functions. Assuming that P(Y = y|X = x) = N (y|h∗(x), σ2)
was heisst das argument für den mean, also y|h∗(x)? for some
function h∗ : X → R and some σ2 > 0 the MLE for data D =
{(x1, y1), . . . , (xn, yn)} in H is given by

ĥ = argmin
h∈H

n

∑
i=1

(yi − h(xi))
2.

MLE properties for n → ∞ (for finite n we must still avoid overfit-
ting)

• consistency, parameter estimate converges to true parameters
in probability,

• asymptotic efficiency, smallest variance among all ”well-behaved”
estimators for large n,

• asymptotic normality.

7.3 Bias Variance Tradeoff
Prediction error descomposition states that prediction error = EDEX,Y [(Y−
ĥD(X))2] = bias2 + variance + noise, or mathematically

EDEX,Y [(Y− ĥD(X))2] = EX[ED ĥD(X)− h∗(X)]2+

EXED[ĥD(X)−ED′ ĥD′ (X)]2 + EX,Y [Y− h∗(X)]2

Bias, Variance, Noise in estimation MLE solution depends on
training data ĥ = ĥD = argming∈H ∑(x,y)∈D(y − h(x))2, but train-
ing data D itself is random, drawn i.i.d from P(X, Y). We thus use
ED[ĥD(X)].

Bias is an error from erroneous assumptions in the learning algo-
rithm. High bias can cause an algorithm to miss the relevant re-
lations between features and target outputs (underfitting). Bias
is expressed as EX[ED ĥD(X)− h∗(X)]2

Variance is an error from sensitivity to small fluctuations in the
training set. High variance can cause an algorithm to model
the random noise in the training data rather than the intended
outputs (overfitting). Variance is expressed as EXVD[ĥD(X)]2 =
EXED[ĥD(X)−ED′ ĥD′ (X)]2

Noise is the risk error incurred by optimal model, i.e. the irre-
ducible error, and constant with respect to the model complex-
ity. Nose is expressed as EX,Y [Y− h∗(X)]2.

J: ich glaube wir sollten noch mal über diese formalen formulierun-
gen von bias, variance und noise sprechen.

Bias and variance in regression The MLE (= least-squares fit) for
linear regression is unbiased (if h∗ in class H) and the minimum
variance estimator among all unbiased estimators. However, least-
squares solutions may be overfit. Thus, trade (a little bit of) bias
for a (potentially dramatic) reduction in variance, i.e. regularization
(ridge, Lasso, etc.).

7.4 Ridge Regression = Maximum A Posteriori (MAP) Es-
timation

A posteriori estimate Introduce bias by expressing assumptions on
parameters through a Bayesian prior, e.g. θ ∼ N (0, β2 Id). Then, the
posterior distribution of θ using Bayes’ rule is given by

P(θ|x, y) =
P(θ)P(y|x, θ)

P(y|x) . (Posterior)

9

Maximizing a posteriori estimate parameters θ leads to the ridge
regression problem

argmax
θ

log P(θ|x, y) = − log P(θ)− log P(y1:n|x1:n, θ)

+ log P(y|x) = argmin
θ

1
2β2 ‖θ‖

2
2 +

1
2σ2

n

∑
i=1

(yi − θTxi)
2.

Ridge Regression = MAP Ridge regression can be understood as
finding the Maximum A Posteriori (MAP) parameter estimate for a
linear regression problem, assuming that the noise P(y|x, θ) is i.i.d.
Gaussian and the prior P(θ) on the model parameters θ is Gaus-
sian.

Regularization and MAP interference More generally, regularized
estimation can often be understood as MAP inference

argmin
w

n

∑
i=1

l(wTxi; xi, yi) + C(w) = argmax
w

∏
i

P(yi|xi, w)P(w)

= argmax
w

P(w|D)

where C(w) = − log P(w) and l(wTxi; xi, yi) = − log P(yi|xi, w).
This perspective allows changing priors (= regularizers) and likeli-
hoods (= loss functions).

7.5 Examples for other Priors and Likelihood Functions
Laplace prior = l1-regularization

P(x; µ, b) =
1
2b

exp
(
−|x− µ|

b

)

One can introduce robustness by changing the likelihood (=loss)
function.

Student-t likelihood

P(y|x, w, ν, σ2) =
Γ(ν+1

2)√
πνσ2Γ(ν

2)

(
1 +

(y−wTx)2

νσ2

)− ν+1
2

Compared with the Gaussian distribution, outliers are encouraged,
because the student-t likelihood decreases algebraically (P(|y− µ| >
t) = O(t−α)), whereas Gaussian likelihood decreases exponentially
(P(|y − µ| > t) = O(e−t)). Thus, student-t likelihood might be
better for data with extreme outliers.

8 Classification: Logistic regression
There are no natural statistical models for classification.

Link function for logistic regression

σ(wTx) =
1

1 + exp(−wTx)
.

what is a link function?

Logistic regression replaces the assumption of Gaussian noise (squared
loss) by i.i.d. Bernoulli noise

P(y|x, w) = Ber(y; σ(wTx)).

The parameters w can be estimated via MLE or MAP estimation.

MLE for logistic regression is the convex optimization problem

ŵ = argmax
w

P(yi:n|w, x1:n) = argmax
w

n

∑
i=1

log(1 + exp(−yiw
Txi)).

Logistic loss gradient is given by

∇wl(w) =
−yx

exp(ywTx) + 1
= −yxP̂(Y = −y|w, x),

i.e. the gradient is large if model w is ’surprised’ by y.

Algorithm 14 SGD for logistic regression
1: Initialize w
2: for t = 1, 2, . . . do
3: Pick data point (w, y) uniformly at random from data D
4: Compute probability of misclassification with current model

P̂(Y = −y|w, x) =
1

1 + exp(ywTx)

5: Take gradient step

w← w + ηtyxP̂(Y = −y|w, x)

Regularizers can be introduced by estimating MAP instead of solv-
ing the MLE problem. For the respective priors, we get the following
optimization problems

• L2 (Gaussian) argminw ∑n
i=1 log(1 + exp(−yiwTxi)) + λ‖w‖2

2

• L1 (Laplace) argminw ∑n
i=1 log(1 + exp(−yiwTxi)) + λ‖w‖1

Algorithm 15 SGD for l2-regularized logistic regression
1: Initialize w
2: for t = 1, 2, . . . do
3: Pick data point (w, y) uniformly at random from data D
4: Compute probability of misclassification with current model

P̂(Y = −y|w, x) =
1

1 + exp(ywTx)

5: Take gradient step

w← w(1− 2ληt) + ηtyxP̂(Y = −y|w, x)

8.1 Regularized Logistic Regression
Regularized logistic regression Find optimal weights by minimiz-
ing logistic loss + regularizer

ŵ = argmin
w

n

∑
i=1

log(1 + exp(−yiw
Txi)) + λ‖w‖2

2 (Learning)

= argmax
w

P(w|x1, . . . , xn, y1, . . . , yn)

Use conditional distribution

P(y|x, ŵ) =
1

1 + exp(−yŵTx)
(Classification)

to for example predict more likely class.

Generalizations Logistic regression may be kernelized, there exist
natural multi-class variants, and one can apply logistic loss function
to neural networks in order to have them output probabilities.

10

8.2 Kernelized Logistic Regression
Kernelized logistic regression Find optimal weights by minimizing
logistic loss + regularizer

ŵ = argmin
α∈Rn

n

∑
i=1

log(1 + exp(−yiα
TKi)) + λαTKα (Learning)

Use conditional distribution

P̂(y|x, α̂) =
1

1 + exp(−y ∑n
j=1 αjk(xj, x))

(Classification)

to for example predict more likely class.

8.3 Multi-class Logistic Regression
Multi-class Maintain one weight vector per class and model

P(Y = y, x, w1, . . . , wc) =
exp(wT

i x)

∑c
j=1 exp(wT

j x)

By setting wc = 0 we force uniqueness and can recover logistic re-
gression as a special case.

Cross-entropy loss is given by

l(y; x; w1, . . . , wc) = − log P(Y = y, x, w1, . . . , wc)

8.4 Comparison
SVM vs. Logistic regression SVM/ Perceptron sometimes has
higher classification accuracy and produces sparse solutions, but
cannot easily give class probabilities. Logistic regression can obtain
class probabilities, but it produces dense solutions.

Outlook: Bayesian Learning

• Optimization based learning such as MAP or MLE, i.e. ŵ =
argmaxw P(w|D) given P(y|x, ŵ) ignores uncertainty in model,
but optimization is typically efficient.

• Integration based learning/ Bayesian model averaging, i.e.
P(y|x) =

∫
P(y|x, w)P(w|D), quantifies uncertainty in model,

but integration is typically intractable.

9 Bayesian Decision Theory
Idea Given a conditional distribution over labels P(y|x) with y ∈ Y ,
a set of actions A, and a cost function C : Y × A → R, Bayesian
decision theory recommends to pick the action that minimizes the
expected cost

a∗ = argmin
a∈A

Ey(C(y, a)|x) = argmin
a∈A

∑
y

P(y|x)C(y, a)

If we had access to the true distribution P(y|x) this decision would
implement the Bayesian optimal decision. In practice, one can only
estimate it, e.g. (logistic) regression.

Logistic Regression Estimated conditional distribution P̂(y|x) =
Ber(y; σ(ŵTx)), action setA = {+1,−1}, and cost function C(y, a) =
[y 6= a]. Then the action that minimizes the expected cost is the most
likely class

a∗ = argmin
a∈A

Ey(C(y, a)|x) = argmax
y

P̂(y|x) = sign(wTx).

LS Regression Estimated conditional distribution P̂(y|x) = N (y; ŵTx, σ2),
action set A = R, and cost function C(y, a) = (y− a)2. Then the ac-
tion that minimizes the expected cost is the conditional mean

a∗ = argmin
a∈A

Ey(C(y, a)|x) = Ey(y|x) =
∫

yP̂(y|x)dy = ŵTx.

9.1 Asymmetric Costs
Asymmetric Costs Estimated conditional distribution P̂(y|x) =
Ber(y; σ(ŵTx)), action set A = {+1,−1}, and cost function

C(y, a) =

cFP y = −1 and a = +1
cFN y = 1 and a = −1
0 otherwise

.

Then the action that minimizes the expected cost is

a∗ = argmin
a∈A

Ey(C(y, a)|x) =
{

1 P(y = +1|x) > cFP
cFP+cFN

0 otherwise
.

Doubtful logistic regression Estimated conditional distribution
P̂(y|x) = Ber(y; σ(ŵTx)), action set A = {+1,−1, D}, and cost func-
tion

C(y, a) =

[y 6= a] a ∈ {+1,−1}
cFN y = 1 and a = −1
c a = D

.

Then the action that minimizes the expected cost is

a∗ = argmin
a∈A

Ey(C(y, a)|x) =
{

y P̂(y|x) ≥ 1− c
D otherwise

,

i.e. pick the most likely class only if confident enough.

Asymmetric cost for regression Estimated conditional distribution
P̂(y|x) = N (y; ŵTx, σ2), action setA = R, and cost function C(y, a) =
c1 max(y − a, 0) + c2 max(a − y, 0). Then the action that minimizes
the expected cost is

a∗ = argmin
a∈A

Ey(C(y, a)|x) = c11[y>a] + c21[y<a]

= ŵTx + σΦ−1
(

c1
c1 + c2

)
,

where Φ is the Gaussian CDF.

9.2 Uncertainty Sampling
Outlook: active learning We would like to minimize the number
of labels. A simple strategy is to always pick the label we are most
uncertain about. Estimate P̂(y|x) from seen data, compute pi =
P(yi = +1|xi) for unknown data point xi. If pi ≈ 1 or pi ≈ 0,
the model is certain, if pi ≈ 0.5, the model is uncertain. Define
an uncertainty score Ui = −|pi − 0.5|, find the most uncertain data
pint i∗ = argmaxi Ui and ask for this label. For linear regression
Ui = |wTxi|.
Comments Active learning violates i.i.d. assumption, it can get
stuck with bad models, and more advanced selection criteria are
available, e.g. query point that reduces uncertainty of other points
as much as possible.

11

Algorithm 16 Uncertainty sampling

1: Pool of unlabeled examples Dx = {x1, . . . , xn}
2: Also maintain an empty data set D, initially empty
3: for t = 1, 2, 3, . . . do
4: Estimate P̂(Yi|xi) given current data D
5: Pick most uncertain unlabeled example

it ∈ argmin
i
|0.5− P̂(Yi|xi)|

6: Query label yit

7: Set D ← D ∪ {(xi, yit)}

10 Generative Modeling
10.1 Discriminative vs. Generative Modeling
Disciminative vs. generative modeling

• Discriminative models aim to estimate P(y|x)
• Generative models aim to estimate the joint distribution P(y, x)

Discriminative models can be derived from generative models by

P(y|x) = P(x, y)
P(x)

=
P(x, y)

∑y P(x, y)
.

Discriminative models do not have access to P(x) and thus will not
be able to detect outliers, i.e. points for which p(xi) is small.

Typical approach to generative modeling

(i) Estimate prior on labels P(Y = y)

(ii) Estimate conditional distribution P(X|Y = y) for each class y

(iii) Obtain predictive distribution using Bayes’ rule

P(y|x) = 1
Z

P(y)P(x|y)

10.2 Naive Bayes Model

10.2.1 Model Description
Assumptions for the naive Bayes model are

(i) Class labels can be modeled as generated from categorical vari-
able P(Y = y) = py, y ∈ Y = {1, . . . , c}.

(ii) Naivety: Model features are conditionally independent given
Y, i.e. given class feature, each data point is ”generated” inde-
pendently of the other features. This assumption is strong and
mostly not true, but it still works somehow.

P(X1, . . . , Xd|Y) =
d

∏
i=1

P(Xi|Y)

(iii) Feature distribution, e.g. for Gaussian Naive Bayes classifier
we have P(X = xi|Y = y) = N (xi|µy,i, σ2

y,i). Note that the
parameters are class and feature dependent.

Gaussian Naive Bayes Classifier

(i) Learning given Data D = {(x1, y1), . . . , (xn, yn)} using MLE

MLE for class prior P̂(Y = y) = p̂y =
#[Y=y]

n

MLE for feature distribution P̂(xi|y) = N (xi; µ̂y,i, σ̂2
y,i)

µ̂i,y = 1
#[Y=y] ∑j:yj=y xj,i, σ̂2

i,y = 1
#[Y=y] ∑j:yj=y(xj,i− µ̂y,i)

2

Warum kein -1? Ist das nicht biased? J: wo ein -1?

(ii) Prediction given new data point x

P̂(y|x) = 1
Z

P(y)P(x|y) Z = ∑
y

P(y)P(x|y)

y = argmax
y′

P̂(y′|x) = argmax
y′

P̂(y′)
d

∏
i=1

P̂(xi|y′).

10.2.2 Gaussian NB vs. Logistic Regression
Assumptions are P(Y = 1) = 0.5 (mild assumption) and inde-
pendent variance, i.e. P(x|y) = ∏iN (xi; µy,i, σ + i2) (rather strong
assumption).

Discriminant function Decision rule for binary classification y =

argmaxy′ P̂(y′, x) is equivalent to y = sign
(

log P(Y=+1|x)
P(Y=−1|x)

)
= sign f (x),

where f is called the discriminant function.

GNB recovers linear classifier With the above assumptions Gaus-
sian Naive Bayes produces a linear classifier

f (x) = log
P(Y = +1|x)
P(Y = −1|x) = wTx + w0 with

w0 = log
p̂+

1− P̂+
+

d

∑
i=1

µ̂2
−,i − µ̂2

+,i

2σ̂2
i

, wi =
µ+,i − µ−,i

σ2
i

.

Corresponding class distribution is of the same form as logistic
regression, i.e.

P(Y = +1|x) = 1
1 + exp(− f (x))

= σ(wTx + w0).

Conclusion If model assumptions are met, GNB will make the same
predictions as Logistic Regression.

10.2.3 Issues with Naive Bayes models
Overconfidence Conditional independence assumption means that
features are generated independently given class label. Thus, predic-
tions may become overconfident.

Example For duplicate data points x2 = x3 = . . . = xd = x1 unser
certain assumptions, NBM predicts p1(x) = 1

1+exp(f1(x))
and pk(x) =

1
1+exp(d· f1(x))

. This gives p1(ε) ≈ 0.5 + ε, but pt(ε) ≈ 01 for large d
(overconfidence).

10.2.4 Categorical Naive Bayes for discrete Features
Setting Model features by (conditionally) independent categorical

random variables P(Xi = x|Y = y) = θ
(i)
x,y such that θ

(i)
x|y ≥ 0 for all

i, x, y and ∑c
x=1 θ

(i)
x|y = 1 for all i, y.

MLE estimation given dataset D = {(x1, y1), . . . , (xn, yn)}

• for class label distribution is P̂(Y = y) = p̂y =
1[Y=y]

n ,

• for distribution of features is i P̂(Xi = c|y) = θ
(i)
c|y = 1[Xi=c,Y=c]

1[Y=y] .

Lifting independence assumption requires specification of proba-
bility of every possible categorical data, requiring in d exponentially
many parameters, which is computationally intractable and a fantas-
tic way to overfit.

10.2.5 Discrete and categorical Features
The (naive) Bayes classifier does not require each feature to follow
the same type of conditional distribution, e.g. model some features
as categorical and some as Gaussian

X1:10 discrete P(xi|y) = Categorical(xi|y, θ)

X11:20 Gaussian P(xi|y) = N (xi; µi|y, σ2
i|y)

12

10.3 Gaussian Bayes Classifier

10.3.1 Model Description
Assumptions for the Bayes model are

(i) Class labels can be modeled as generated from categorical vari-
able P(Y = y) = py, y ∈ Y = {1, . . . , c}.

(ii) Model features as generated by multivariante Gaussian P(x|y) =
N (x; µy, Σ2

y).

ML for Gaussian Bayes Classifier Given Data D = {(x1, y1), . . . , (xn, yn)},
MLE for feature distribution P̂(x|y) = N (x; µ̂y, Σ̂y) with estimators
µ̂y and Σ̂y and MLE for class prior P̂(Y = y) are given by

P̂(Y = y) = p̂y =
#[Y = y]

n

µ̂y =
1

#[Y = y] ∑
i:yi=y

xi Σ̂y =
1

#[Y = y] ∑
i:yi=y

(xi − µ̂y)
T(xi − µ̂y)

Discriminant function is given by

f (x) = log
p

1− p
+

1
2

(
log
|Σ̂−|
|Σ̂+|

+ (x− µ̂−)
TΣ̂−1
− (x− µ̂−)

−(x− µ̂+)
TΣ̂−1
− (x− µ̂+)

)

10.3.2 Fisher’s Linear Discriminant Analysis (LDA)
Fisher’s linear discriminant analysis (LDA) for binary classifica-
tion (c = 2). Suppose p = 0.5 and Σ̂+ = Σ̂− = Σ̂, then the discrim-
inant function becomes again a linear function f (x) = wTx + w0
with

w = (µ̂+ − µ̂−)
TΣ̂−1 and w0 =

1
2

µ̂T
−Σ̂−1µ̂− −

1
2

µ̂T
+Σ̂−1µ̂+.

Under these assumptions, we predict y = sign f (x) which is called
Fisher’s linear discriminant analysis.

10.3.3 LDA vs. Logistic regression
Corresponding class distribution is of the same form as logistic
regression, i.e.

P(Y = +1|x) = 1
1 + exp(− f (x))

= σ(wTx + w0).

Fisher’s LDA Logistic Regression
generative model discriminative model
+ can be used to detect outliers - cannot detect outliers
- assumes normality of x + makes no assumptions on X
- not robust against viola-
tion of this assumption

+ more robust

Conclusion If model assumptions are met, Fisher’s LDA will make
the same predictions as Logistic Regression.

10.3.4 Gaussian Naive Bayes vs. General Gaussian Bayers
Classifiers

GNB models General GB models
- conditional independence
assumption may lead to
overconfidence

+ captures correlations
among features

+ predictions might still be useful + avoids overconfidence
+ # parameters = O(cd) - # parameters = O(cd2)
+ complexity (memory + in-
ference) linear in d

complexity quadratic in d

10.3.5 LDA vs. PCA
LDA can be viewed as a projection to a 1D subspace that maximizes
ration of between-class and within-class variances. In contrast, PCA
(k = 1) maximizes the variance of the resulting 1D projection.

10.3.6 Quadratic Discriminant Analysis (LDA)
Quadratic discriminant analysis (LDA) uses the non-simplified
discriminant function f (x) and predicts using y = sign f (x).

10.4 Outlier Detection
Data point probability can be calculated as

P(x) =
c

∑
y=1

P(y)P(x|y) GBC
=

c

∑
y=1

p̂yN (x|µ̂y, Σ̂y).

Outliers are points for which P(x) ≤ τ holds.

10.5 Avoiding Overfitting: Introducing Priors
Avoiding overfitting can be done by

• restricting the model class to reduce the number of parame-
ters, e.g. by further assumptions on covariance structure, e.g.
Gaussian Naive Bayesm

• using priors.

Problems with MLE estimation In the extreme case of n = 1, the
estimator θ̂ = 1[Y=1]

n predicts θ̂ = 1
1 = 1 for D = {(y1)}, y1 = 1, i.e.

it is overconfident.

Introducing priors by computing the posterior distribution

P(θ|y1, . . . , yn) =
1
Z

P(θ)P(yi:n|θ) Z =
∫

P(θ)P(y1:n|θ)dθ

Beta distribution Beta(θ; α+, α−) = 1
B(α+ ,α−)

θα+−1(1− θ)α−−1

Definition 10.1 (Conjugate distributions) A pair of prior distributions
and likelihood functions is called conjugate if the posterior distribution re-
mains the same family as the prior.

Beta conjugate With prior Beta(θ; α+, α−) and n+ positive and n−
negative labels, the posterior distribution is Beta(θ; α+n+, α− + n−).
Thus, α+ and α− act as pseudo-counts.

Beta MAP estimate

θ̂ = argmax
θ

P(θ|y1, . . . , yn; α+, α−) =
α+ + n+ − 1

α+ + n+ + α− + n− − 2

Examples of conjugate priors are listed below

Remarks conjugate priors can be used as regularizers why conju-
gate priors? with almost no computational cost. Choose hyperpa-
rameters by crossvalidation.

TODO check alignment adsadsad

13

Prior/ Posterior Likelihood function
Beta Bernoulli/ Binomial
Dirichlet Categorical/ Multinomial
Gaussian (fixed covariance) Gaussian
Gaussian-inverse Wishart Gaussian
Gaussian process Gaussian

11 Probabilistic Modeling of Unsupervised Learning:
Latent Variable Modeling

We will focus on missing labels, ideas may be applied to missing
data as well.

11.1 Gaussian Mixture Models
Assumptions P(X, Y) is a Gaussian-Bayes classifier: P(Y = y) = py
and P(x|y) = N (x; µy, Σy). We also require i.i.d. data.

Gaussian mixtures are convex combinations of Gaussians

P(X = x|θ) = P(X = x|µ, Σ, w) = ∑
i

wiN (x; µi, Σi),

where wi ≥ 0 and ∑i wi = 1.

Mixture modeling models each cluster i ∈ {1, . . . , k} as a prob-
ability distribution P(x|θj). Using i.i.d. assumption of data, the
likelihood of data is

P(D|θ) =
n

∏
i=1

k

∑
j=1

wjP(X = xi|θj).

Optimization problem by minimizing the negative log likelihood

(µ∗, Σ∗, w∗) = argmin−∑
i

log
k

∑
j=1

wjN (xi|µj, Σj),

while
k

∑
j=1

wj = 1 and Σj positive definite

is non-convex and constrained. One could try to optimize it using
(stochastic) gradient descent, but the constraints might be difficult
to maintain.

Choosing k Same as for k-means. However, for GMMs typically
cross-validation works fairly well.

GMMs for density estimation and not for clustering by for exam-
ple modeling P(x) as Gaussian mixture and P(x|y) using logistic
regression, neural network, etc. Then P(x, y) = P(x)P(y|x) is a
valid model. This combines the advantage of accurate predictions
and robustness from discriminative model with the ability to detect
outliers.

Anomaly detection with mixture models by comparing the esti-
mated density of a data point against a threshold. If we do not have
any examples of anomalies, this is challenging. If we do have some
examples, we could try

• varying the threshold to trade false-positives and false-negatives,

• to use precision-recall curves/ ROC curves as evaluation crite-
rion, e.g. maximizing F1-score.

This allows to optimize the threshold, e.g. via cross-validation.

Why are mixture models useful

• Can encode assumptions about shape of clusters, e.g. fit el-
lipses instead of points.

• Can be part of more complex statistical models, e.g. classifiers
(or more general probabilistic models)

• Probabilistic models can output likelihood P(x) of a point x.
This can be useful for anomaly detection.

• Can be naturally used for semi-supervised learning.

11.2 Expectation-Maximization Algorithm
Latent variables are variables that are not directly observed but are
rather inferred (through a mathematical model) from other variables
that are observed (directly measured). Mathematical models that
aim to explain observed variables in terms of latent variables are
called latent variable models. Concretely, this means for each data
point xi we introduce a latent variables zi denoting the class that this
points is assigned.

EM algorithm is an iterative method to find maximum likelihood
(ML) or maximum a posteriori (MAP) estimates of parameters in
statistical models, where the model depends on unobserved latent
variables. The EM iteration alternates between performing an expec-
tation (E) step and a maximization (M) step described below.

E-step creates a function Q for the expectation of the complete data
log-likelihood

L(θ; x) = log P(X = x; θ) = log ∑
z

P(X = x, Z = z; θ)

evaluated using the current estimate for the parameters by
computing

γz(x) = P(Z = z|X = x, θ(t−1)).

M-step computes parameters maximizing the expected log-likelihood
found on the E step by optimizing

θ(t+1) = argmax
θ

Q(θ; θ(t−1)),

Q(θ, θ(t)) = EZ|X=x,θ(t) [log P(X, Z|θ)]

=
n

∑
i=1

EZ|X=xi ,θ(t) [log P(X = xi, Z|θ)]

=
n

∑
i=1

k

∑
z=1

P(Z = z|X = xi, θ(t)) log P(X = xi, Z = z|θ)

=
n

∑
i=1

k

∑
z=1

γz(xi) log (P(Z = z)P(X = xi|Z = z; θ))

These parameter-estimates are then used to determine the dis-
tribution of the latent variables in the next E step. This proce-
dure is equivalent to training a GBC with weighted data and
admits a closed form solution.

11.2.1 Hard-EM Algorithms
Fitting a GMM = training a GBC without labels Idea is to repeat-
edly fill in or update the missing data and then train the resulting
dataset. The algorithms assigns (only) a label to each data point
which is why it called hard.

Algorithm 17 Hard Expectation Maximization (EM)

1: Initialize the parameters θ(0)

2: for t = 1, 2, 3, . . . do
3: E-Step: Predict most likely class for each data point

z(t)i = argmax
z

P(z|xi, θ(t−1))

= argmax
z

P(z|θ(t−1))P(xi|z, θ(t−1))

4: and complete the data D(t) = {(x1, z(t)1), . . . , (xn, z(t)n)}.
5: M-Step: compute MLE as for the Gaussian Bayes classifier

θ(t) = argmax
θ

P(D(t)|θ)

Problems with Hard-EM Points are assigned a fixed label even
though the model is uncertain. This tries to extract too much in-
formation from a single point. In practice, this may work poorly if
clusters are overlapping.

14

11.2.2 Soft-EM Algorithm
Posterior probabilities given a model P(z|θ), P(x|z, θ), we can com-
pute a posterior distribution over cluster membership

γj(x) = P(Z = j|X = x, Σ, µ, w) =
wjP(X = x|Σj, µj)

∑l wlP(X = x|Σl , µl)

MLE At MLE (µ∗, Σ∗, w∗) = argmin−∑i log ∑k
j=1 wjN (xi|µj, Σj) it

must hold that

µ∗j =
∑n

i=1 γj(xi)xi

∑n
i=1 γj(xi)

Σ∗j =
∑n

i=1 γj(xi)(xi − µ∗j)
T(xi − µ∗j)

∑n
i=1 γj(xi)

w∗j =
1
n

n

∑
i=1

γj(xi)

Algorithm 18 Soft Expectation Maximization (EM)
1: while not converged do

2: E-Step: calculate γ
(t)
j (xi) for each i and j given estimates of

µ(t−1), Σ(t−1), w(t−1) from previous iteration
3: M-Step: fit clusters to weighted data points, i.e. calculate

w(t)
j , µ

(t)
j , and Σ(t)

j .

Constrained GMMS are special cases of Gaussian mixtures

• Spherical Σj = σ2
j · I, with #params = k

• Diagonal Σj = diag(σ2
j,1, . . . , σ2

j,d), with #params = dk

• Tied Σ1 = . . . = Σk, with #params = d(d+1)
2

• Full, with #params = k d(d+1)
2

Discussion Soft EM will typically result in higher likelihood values,
because it can deal better with ”overlapping clusters”.

11.2.3 Theory behind EM
Convergence of EM One can prove that the EM algorithm monoton-
ically increases the likelihood log P(x1:n|θ(t)) ≥ log P(x1:n|θ(t−1)).
For Gaussian mixture, EM is guaranteed to converge to a local mini-
mum, but the quality of solution highly depends on initialization. A
common strategy is to rerun the algorithm multiple times and use
the solution with largest likelihood.

Initialization

• for weights: typically use a uniform distribution w(0)
i = 1

k ∀i

• for means use random initialization or k-means++, i.e. pick

µ
(0)
i = xji

• for variances for example initialize according to empirical co-
variance of the data (perhaps restrict to spherical) Σ1 = . . . =
Σk = 1

n ∑n
i=1(xi − x)(xi − x)T .

Hard EM performs alternating optimization of the complete data
likelihood

z(t)1:n = argmax
zz:n

P(x1:n, z1:n|θ(t−1)) (E-step)

θ(t) = argmax
θ

P(x1:n, z1:n|θ) (M-step)

and converges to a local optimum of maxz1:n ,θ P(x1:n, z1:n|θ).
EM more generally EM algorithm is more widely applicable. It can
be used whenever the E and M steps are traceable, i.e. we must be
able to compute and maximize the complete data likelihood. This
can be used for example for imputing (some) missing features and
handling likelihoods beyond Gaussian (e.g. categorical).

11.2.4 EM vs. k-means
Assumptions are uniform weights over mixture components and
identical spherical covariance matrices.

Hard EM recovers k-means under the above assumptions. The steps
in the hard EM algorithm become the same decisions as Lloyd’s
heuristic

z(t)i = argmax
z

P(z|θ(t−1)) = argmin
z
‖xi − µ

(t−1)
z ‖, (E-step)

µ
(t)
j =

1
nj

∑
i:z(t)i =j

xi. (M-step)

Soft EM recovers k-means under the above assumptions and ad-
ditionally variances tending to 0, because for σ2 → 0 it holds that

γi(x)→
{

1 µi is closest to x
0 otherwise

.

11.3 Avoiding Overfitting with GMMs
Degeneracy For only one data point, the optimal log-likelihood is
−logP(x|µ, σ) = 1

2 log(2πσ2) + 1
2σ2 (x − µ)2 → −∞ for µ = x and

σ2 → 0, i.e. the minimization problem is not bounded from below.
Thus, the ”optimal” GMM chooses k = n and puts one Gaussian
around each data point with variance tending to 0. This is overfit-
ting.

Adding a Wishart prior to the covariance matrix and computing
the MAP instead of MLE can regularize the problem and thus avoid
degeneracy (variances→ 0). The corresponding update rule reads

Σ∗j =
∑n

i=1 γj(xi)(xi − µ∗j (xi − µ∗j)
T)

∑n
i=1 γj(xi)

+ ν2I

11.4 Gaussian-Mixture Bayes classifier
Given labeled data set D = {(x1, y1), . . . , (xN , yN)} with labels yi ∈
{1, . . . , m}, estimate class prior P(y) and conditional distribution for
each class as Gaussian mixture model

P(x|y) =
ky

∑
j=1

w(y)
j N (x; µ

(y)
j , Σ(y)

j).

Classification is done by Bayes rule

P(y|x) = 1
Z

P(y)
k j

∑
j=1

w(y)
j N (x; µ

(y)
j , Σ(y)

j).

11.5 Semi-supervised Learning with GMMs
We would like to combine unlabeled and labeled data.

Semi-supervised learning is learning from large amounts of unla-
beled data and small amounts of labeled data.

Modification to EM algorithm The computation of γ also takes
into account the labeled data points xi

γj(xi) =

{
P(Z = j|xi, Σ, µ, w) xi is unlabeled
[j = yi] xi is labeled with label yi

The computation of wj, µj and Σj does not change.

11.6 Outlook: Implicit generative Models
Given sample of (unlabeled) points x1, . . . , xn, the goal is to learn a
model X = f (Z; w). The approach is to optimize parameters w to
make samples from model hard to distinguish from data sample.

A Convex functions

Theorem A.1 (Jensen’s inequality) Let f be convex and x1, . . . , xn ∈
Rd, λ1, . . . , λn ∈ [0, 1], such that ∑n

i=1 λi = 1. Then

f (λ1x1 + . . . + λnxn) ≤ λ1 f (x1) + . . . + λn f (xn)

15

Also, if x ∈ Rd is a random variable, then

f (E[x]) ≤ E[f (x)].

Theorem A.2 (Gradient inequality) Let f be convex, then ∀x, y ∈ Rd

f (y)− f (x) ≥ ∇ f (x)T(y− x).

Theorem A.3 Let f : Rd → R be convex and A, b such that ∀z ∈ Rd

Az + b ∈ Rd. Then g(z) = f (Az + b) is convex in z ∈ Rn.

Theorem A.4 If f is convex and x∗ ∈ Rd sucht that ∇ f (x∗) = 0, then
x∗ is a global minimizer, i.e. f (x∗) ≤ f (x) ∀x ∈ Rd.

Bibliography
[1] StackExchange. How to choose the number of hidden layers and

nodes in a feedforward neural network?, 2010.

16

	Contents
	Overview
	Supervised Learning
	Regression and Gradient Descent
	Closed-form Solution: Linear Least Squares
	Optimization: Gradient Descent
	Non-linear Regression via Linear Regression
	Model selection
	Cross validation
	Regularization

	Classification
	Linear Classification
	Perceptron and Stochastic Gradient Descent
	Support Vector Machines (SVM)

	Feature Selection
	Greedy feature selection
	Linear models

	Non-linear Classification
	Kernels
	k-Perceptron
	k nearest Neighbors (k-NN)
	Kernelized SVM
	Kernelized Regression

	Class Imbalance
	Multi-class Problems

	Neural Networks
	Training: Momentum SGD, Backpropagration
	Initialization and Termination
	Choosing parameters
	Regularization
	Invariances
	Convolutional Neural Networks (CNN)
	ANNs vs. tanh-kernels

	Unsupervised Learning
	Clustering: k-means
	Dimension Reduction
	Linear Dimension Reduction: PCA
	Nonlinear Dimension Reduction
	Kernel PCA
	Autoencoders
	Other

	Autoencoders vs. PCA
	PCA vs. k-Means

	Probabilistic modeling
	Probabilistic Modeling, Bias-variance tradeoff
	Parametric Estimation
	Least Squares Regression = Gaussian Maximum Likelihood Estimation (MLE)
	Bias Variance Tradeoff
	Ridge Regression = Maximum A Posteriori (MAP) Estimation
	Examples for other Priors and Likelihood Functions

	Classification: Logistic regression
	Regularized Logistic Regression
	Kernelized Logistic Regression
	Multi-class Logistic Regression
	Comparison

	Bayesian Decision Theory
	Asymmetric Costs
	Uncertainty Sampling

	Generative Modeling
	Discriminative vs. Generative Modeling
	Naive Bayes Model
	Model Description
	Gaussian NB vs. Logistic Regression
	Issues with Naive Bayes models
	Categorical Naive Bayes for discrete Features
	Discrete and categorical Features

	Gaussian Bayes Classifier
	Model Description
	Fisher's Linear Discriminant Analysis (LDA)
	LDA vs. Logistic regression
	Gaussian Naive Bayes vs. General Gaussian Bayers Classifiers
	LDA vs. PCA
	Quadratic Discriminant Analysis (LDA)

	Outlier Detection
	Avoiding Overfitting: Introducing Priors

	Probabilistic Modeling of Unsupervised Learning: Latent Variable Modeling
	Gaussian Mixture Models
	Expectation-Maximization Algorithm
	Hard-EM Algorithms
	Soft-EM Algorithm
	Theory behind EM
	EM vs. k-means

	Avoiding Overfitting with GMMs
	Gaussian-Mixture Bayes classifier
	Semi-supervised Learning with GMMs
	Outlook: Implicit generative Models

	Convex functions
	Bibliography

