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Prof. Geshkenbein, FS 2019
August 29, 2019, 11:00-11:30, Janik Schüttler

Summary The exam took place in Prof Geshkenbein’s office. It was on paper and I was offered a
huge choice of pens. The table was quite small and had to fit the assistant (Tudor Pahomi), Prof.
Geshkenbein, and me. The assistant took notes as far as I noticed. Geshkenbein told us that he will
ask questions from the exercises so that people will be motivated to solve them.

Description of the content: Hooke’s law, homogenous deformation, Euler’s equation, shape of water in
rotated cylinder (exercise 7.3 from the problem sheets), Reynolds number.

Ablauf Prof. Geshkenbein asked me in, I shook hands with him and the assistant. Prof Geshkenbein
then disappeared for 5 minutes and the assistant and me just sat there and chatted a little. When Prof.
Geshkenbein came back, he asked me for my name and started the exam right away.

Prof: Can you derive Hooke’s law?

Me: Sure. We start by defining the free energy. From a previous derivation we know that σik = ∂F
∂uik

∣∣∣
T

which means that free energy must be a function of the strain tensor uik. Since in equilibrium there
should be no stresses there will be no linear strain terms in the free energy if we expand in strain. For
isotropic bodies we write down the following quadratic combination

F = F0 +
1

2
λ(ull)

2 + µuikuik.

Prof: Can you write down uik?

Me: It is defined as the symmetric combination of position (yea, I said position, that was a little
blackout lol even though this is probably the easiest question he could have asked)

uik =
1

2

(
∂ri
∂xk

+
∂rk
∂xi

)
.

Prof: What is this r (of course noticing my blackout)?

Me: (Remembering) The deformation. We usually write it as ui.

Prof: Okay. Why is the free energy a function of this strain? Why do we need a tensor? Why would
we want a symmetric tensor in the free energy? Why can’t we write it differently? (He took maybe
one minute to ask all of these questions with many uuhms and pauses, so I didn’t know exactly what he
wanted me to answer.)
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Me: (I tried to answer all of the questions one by one.) The free energy should be a function of the
strain because of this derivation...

Prof: (Interrupting) ...yes, but why do we want a symmetric tensor? Why can’t it for example be
uik =

∂ui
∂xk

or uik = 1
2

(
∂ui
∂xk
− ∂uk

∂xi

)
?

Me: The idea is that the free energy should be invariant under rotations. Symmetric tensors are
rotation invariant and that’s why we use a symmetric tensor to write down the free energy. The strain
itself is symmetric by convention.

Prof: (Not fully satisfied with my answer). But can’t we just use a non-symmetric version of the
strain?

Me: (I ran out of arguments, so I tried something else). Every non-symmetric tensor can be decomposed
into a symmetric and an antisymmetric part. The antisymmetric part does not matter under rotations
so we can safely neglect it and the symmetric part remains.

Prof: Okay. (He seemed satisfied now, but not totally sure. He went on to explain something, which I
don’t recall). How would you now derive Hooke’s law from this?

Me: We use this formula to get a relation between the stress and the strain. By taking the derivative
of the free energy we obtain Hooke’s law in its most basic form which reads

σik =
∂F

∂uik
= λullδik + 2µuik,

but there are other variants using different constants.

Prof: Imagine the following situation: we have a body where we apply a pressure p to two sides. What
will happen? (He draws the following sketch similar to the homogenous deformation example in lecture
2.)

Me: The body will be compressed in one direction, let’s call this direction z, and widened in the
orthogonal directions. Quantitatively we require the boundary condition σzz = p and all other
components of the stress to be 0. From a different representation of Hooke’s law we find that
uzz =

σzz
E = p

E , where E is the compression modulus.

Prof: And how would you derive the other components?
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Me: Using Poisson’s ratio σ we can relate the strain in z direction to the orthogonal strains in x and y
direction. It is defined such that for homogenous deformations in one direction the orthogonal strain
components can be computed as uxx = uyy = −σuzz.

Prof: Okay. How would this problem change if the body was inclined between two non-deformable
walls? Would the deformation be larger or smaller?

Me: The deformation in x and y direction would be zero, so definitely smaller then in the previous
problem...

Prof: (Interrupting) ...yea, but in the z direction?

Me: There the compression would be less. If we assume the same elasticity for both settings, the body
cannot be deformed in x and y direction anymore. We would model this problem using the additional
boundary conditions that the deformation in x and y direction must vanish, i.e. ux = uy = 0.

Prof: But cannot you see directly what would change?

Me: Mhm, I mean we see what would happen from this, don’t we?

Prof: In the free energy only the uzz strain term would remain and all others would vanish so Hooke’s
law would reduce to only this term and we see directly the relation.

Me: Mhm I see, but I would argue that this is somewhat the same approach. Using the boundary
conditions is only the more formal way of treating this problem, in the end Hooke’s law will also reduce
to this using these boundary conditions.

Prof: Can you derive Euler’s equation?

Me: Sure. Euler’s equation is a fancy way of stating Newton’s second law. We first write down the
force as the pressure acting on a surface of a volume of the fluid and we usually give it a minus to
account for the inward force

F = −
∮
p dS = −

∫
∇p dV,

where I’ve used Gauss’ theorem. On the other hand, using Newton’s second law explicitly, we can write
the force as

F = ma =

∫
ρ
dv

dt
dV

Equating both and using the facts that this must hold for all unit volumes we get the following equality

ρ
dv

dt
= ∇p.

Now the time derivative of the velocity has a little subtlety. Since it is a function of position and time
and position itself is a function of time, we have to employ the chain rule to calculate it. Using the
chain rule, we arrive at dvi

dt = ∂vi
∂t + dxk

dt
dvi
dxk

, which again in vector notation reads

dv

dt
=
∂v

∂t
+ (v · ∇)v.
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Plucking this into the above equation yields Euler’s equation.

Prof: Which is?

Me: Usually we take the density to the other side and obtain the following

∂v

∂t
+ (v · ∇)v = −∇p

ρ
.

Prof: Can you apply Eulers equation to a rotating cylinder to calculate the shape of the surface?

Me: (This was exercise 7.3 from problem sheet 7 ). Yes, the equilibrium condition states that the
gradient of pressure must equal external forces F = ∇p. This is something I forgot to mention in the
previous derivation. From Newtons second law we see that external forces can be added to Eulers
equation (Geshkenbein makes a sign that I should go on). The external force in our case are gravity
and the centrifugal force. If we write down the z and r components of the equilibrium equation we get

∂rp = ρω2r,

∂zp = −ρg.

From this we find the pressure by integrating

p(z, r) =
ρ

2
ωr2 − ρgz + const.

with some constant that is of no interest. On the surface pressure must balance atmospheric pressure...

Prof: (interrupting) ...yes, but what is the shape of the water?

Me: So the short story is that using this equation we see that the relation between the radius r and
the height z is quadratic which shows that the shape of the water must be quadratic in the radius.

Prof: Good. What if we stir a cup of tea. Can you estimate Reynolds number for this situation?

Me: I would guess it is relatively high (I know the answer would be around 100, because he mentioned
it once in a lecture). The Reynolds number is defined as the ratio of velocity, body size and viscosity,
Re = vL

ν . I am not sure about the magnitude of the viscosity of water though...

Prof: In which units do you need it?

Me: The normal units of meters and seconds.

Prof: Use 10−6.

Me: Okay. For the body size we can assume a magnitude of say 10−1, while for the velocity we get
something like maybe 1− 101 m/s.

Prof: (Prof and assistant look at each other and make movements that this would be super fast).

Me: I agree, lets maybe use something in the range of 10−2 − 10−3, but it doesn’t really matter,
because what we see is that Reynolds number nevertheless will be large and of order ∼ 100.
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Prof: Does a Reynolds number of such magnitude affect the problem?

Me: We usually have two limits, the high Reynolds number limit for Reynolds numbers above around
40 and the low Reynolds number limit for Reynolds numbers far smaller than 1, so this would be in the
very non-viscous regime.

Prof: But would the problem change if we used a viscous fluid instead of a non-viscous fluid?

Me: In the equation you would get an additional term, a Laplacian, but my feeling is that the
equilibrium condition ∇p = F would not change in such a regime (I take at least 15 seconds to think
about it), although I am not sure why.

Prof: Using the same arguments about rotation from the beginning one could see that the Laplacian
will vanish. One could of course remark that this symmetry might not be super stable as we estimated
it for the river flow, but in principle this would be the answer.

Me: Right, that makes sense (it really did and I wanted to talk more about it, but time was up).

Prof: Good, we are done.

Final Remarks I feel like Geshkenbein and me sometimes thought of different things, meaning I
often felt I understood his questions not like he did and did not answer what he wanted to hear. He
interrupted me from time to time which I found somewhat confusing. After I left the exam I was a bit
angry about myself for all my tiny unnecessary mistakes. However, these mistakes seemed to not have
influenced his grading. Together with my impression of him often not being satisfied with my answers I
though I would be graded a good part below 6.

Expected mark: 5
Received mark: 6
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