
Mechanics of Continua

Janik Schüttler
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1 Catenary, Suspension Bridge

and Elastic String

Equilibrium shapes of hanging inelastic cable, a

suspension bridge and an elastic string.

u(x) =
Tx
ρg

(
cosh

(
ρg

Tx
x

)
− 1

)
(Catenary)

u(x) =
ρhg

2Tx
x2 (Suspension Bridge)

u(x) =
ρhg

2T0
x2 (Elastic String)

Derivation Catenary T (x+dx)−T (x) = ρg dl and

suspension bridge T (x+dx)−T (x) = ρg dx. Rewrite

dl. Tx = const. Tension is tangential to line
Ty
Tx

=
du
dx . Solve using v = u′. Tension Tx from boundary

condition (chain length). For elastic string minimize

energy δE = T0δL + Egravitation = T0

∫ √
1 + u′2 −

1 dx+
∫
ρgudx. Use Taylor for first expression.

2 Elasticity Theory

2.1 Strain and Stress Tensors

Displacement vector u(r) = r′ − r.

Strain tensor is the symmetric tensor

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xi

)
≈ 1

2

(
∂ui
∂xk

+
∂uk
∂xi

)

Rel change of volume dV ′−dV
dV = uii = divu

Derivation dl′ = (dxi + dui)
2 = ... = dl2 +

2uik dxi dxk by expanding and using dui = ∂ui
∂xk

dxk.

Assume small displacement, then ∂ui
∂xk

� 1 and

quadratic terms can be neglected. Volume dV ′ =

dx′1 dx′2 dx′3 = dV(1+u11)(1+u22)(1+u33) = dV(1+

uii + . . .).

Shear and compression The strain tensor can be

rewritten as uik = (uik − 1
3δikull) + 1

3δikull. The

first part is called shear (only off-diagonal) and corre-

sponds to volume perserving deformations, the sec-

ond part is called compression (only diagonal) and

corresponds to shape perserving deformations..

Stress tensor σik

Fi =
∂σik
∂xk

(Stress Tensor)

Derivation Newton’s third law: total inner force

from the inner part is zero, hence all forces arise at

the surface.

Stress and energy σik =
(
∂F
∂uik

)
T

=
(
∂U
∂uik

)
S

Derivation Calculate work δw = Fiδui = ∂σik
∂xk

δui in

a volume integral, use partial integration B.1, taking

surface to infinity trick B.2. Calculate dU = T ds −
δw = T ds+ σij duij and dF = −s dT + σik duik.

Moment of forces (torque)

Mik =

∮
σilxk − σklxi dSl (Torque)

Derivation Use Mik =
∫

(Fixk−Fkxi) dV, Fi = ∂σik
∂xk

reverse product rule B.3, Gauss’ theorem
∫
∂A
∂xl

=∮
AdSl and symmetry of σik.

Constants used in subsequent equations.

• Lamé Coefficients λ, µ with µ > 0. λ > 0 holds

in practice, but not required from thermodynam-

ics.
• Compression Modulus K = λ+ 2

3µ > 0
• Young Modulus E = 9Kµ

3K+µ , also coefficient of

extension.
• Poisson’s Ratio σ = 1

2
3K−3µ
3K+2µ is the ratio of the

transverse compression to the longitudinal ex-

tension. Theoretically −1 ≤ σ ≤ 1/2, experi-

mentally 0 ≤ σ ≤ 1/2

2.2 Boundary Conditions

Hydrostatic compression w condition −p dSi =

−pδik dSk yields BC σik = −pδik.

External force at surface with condition Pi dS =

σik dSk = σiknk dS yields BC σiknk = Pi.

2.3 Hooke’s Law

Equilibrium state satisfies σik = uik = 0.

Free Energy per unit volume

f = f0 +
λ

2
(uii)

2 + µuikuik =
1

2
σikuik

f =
E

2(1 + σ)

(
u2
ik +

σ

1− 2σ
u2
ll

)
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Derivation Alternative 1 : In equilibrium σik = 0,

hence F quadratic in uik. Neglect higher order terms.

Alternative 2 : Energy must depend on gradient of

displacement, but must be rotation invariant and

hence should not contain the antisymmetric part
∂ui
∂xk
− ∂uk

∂xi
terms.

Hooke’s Law

σik = λullδik + 2µuik = Kullδik + 2µ(uik −
1

3
δikull)

=
E

1 + σ

(
uik +

σ

1− 2σ
ullδik

)
uik =

1

9K
δikσll +

1

2µ
(σik −

1

3
δikσll) (Hooke’s Law)

=
1

E
((1 + σ)σik − σδikσll)

Derivation Vary F with respect to uik and invert

expression to obtain Hook’s law.

2.4 The Equation of Equilibrium for

isotropic Bodies

Homogeneous Deformations are deformations

where the strain tensor is constant throughout the

volume of the body.

Equilibrium equation

µ∇2u+ (µ+ λ) grad divu = −F

µ
∂2ui
∂x2

k

+ (µ+ λ)
∂2ul
∂xi∂xl

= −Fi

Alternative representations include

E

2(1 + σ)

∂2ui
∂x2

k

+
E

2(1 + σ)(1− 2σ)

∂2ul
∂xi∂xl

= −ρgi

∆u+
1

1− 2σ
grad divu = −ρg1 + σ

E
2− 2σ

1− 2σ
grad divu− rot rotu = −ρg1 + σ

E

Derivation The equilibrium condition states 0 =∑
F = ∂σik

∂xk
+ Fi,ext. Use Fext = ρgi and rewrite

terms.

2.5 Thermal Expansion

Free energy under thermal expansion F (T ) =

F0(T )−Kα(T − T0)uii + 1
2Ku

2
ll + µ(uik − 1

3δikuii)
2

Stress under thermal expansion σik = −Kα(T−
T0)δik +Kullδik + 2µ(uik − 1

3δikull)

Derivation For T = T0 body undeformed, T 6= T0

body will be deformed even without external forces,

hence F becomes linear in A(T )uii. Taylor A around

T0 and keep only linear term.

Volume change from heating δV/V = ull =

α(T − T0) when there are no external forces. α is

the thermal expansion coefficient.

Derivation For σik = 0 we get uik ∝ δik.

Equation of equilibrium for non-uniformly heated

isotropic bodies

grad divu− 1− 2σ

2(1− σ)
rot rotu = α∇T

2.6 Elasticity of Crystals

Elastic modulus tensor is the tensor λiklm s.t.

F =
1

2
λiklmuikukl

and hence σik = λiklmulm holds. In general for

isotropic bodies it is given by

λiklm = λδikδlm + µ(δilδkm + δimδkl),

(Elastic Modulus)

and has 21 independent components.

Derivation 6 independent combinations of {x, y, z}.
First pair can be combined with 6 other pairs, second

with 5 other pairs etc. 21 = 6 + 5 + 4 + 3 + 2 + 1.

Monoclinic has 13 independent components.

Orthorombic has 9 independent components.

Tetragonal System has 6 independent compo-

nents because of mirror and rotation symmetry.

It consists of a cube with two sides of the same

length.

Hexagonal has 5 independent components.

Cubic System has 3 independent components. It

consists of a cube with three sides of the same

length.

Thermal expansion uik = 1
3αik(T − T0) where

αik is a symmetric tensor with varying number of

components: 3 (triclinic, monoclinic, orthorombic),

2 (tetragonal), 1 (cubic).
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Elastic energy of classical harmonic lattice

δEint =
N

16

∑
[CikRjRl + CjkRiRl

+ CilRjRk + CjlRiRk]uijukl

λijkl =
1

8V0

∑
Cik(R)RjRl + Cjk(R)RiRl

+ Cil(R)RjRk + Cjl(R)RiRk

Derivation Start with Eint = 1
2

∑
R,R′ V (R +

u(R) − (R′ + u(R′))), Taylor, linear term vanishes,

use Cij = ∂2V
∂Ri∂Rj

. Expand ui(R) = ui(R
′) +

∂ui
∂Rj

(R − R′)j and shift R − R′ → R. Replace
∂ui
∂Rj

by uij (energy does not change under rotation).

Add combinations by exchanging i ↔ j, k ↔ l,

pull uijukl out of the bracket and compare with

δEel = 1
2

∫
λijkluijukl dV to obtain λijkl. V = NV0

where V0 is the unit cell volume.

2.7 Bending of Rods

Assumptions Displacements are small, rod is thin,

forces at surface to bend rod are small and can be

neglected, rod parallel to x-axis.

Boundary conditions σiknk = 0 = σzznz + σzyny
for rod along x-axis (i.e. nx = 0).

Components of σik are all zero except for σxx

Derivation For some point on the circumference of

the cross section ny = 0 and then BC =⇒ 0 =

σzznz =⇒ σzz = 0. Similarly for σyy = 0. Rod is

thin, hence σzz = σyy = 0 everywhere.

Neutral surface passes through center of mass.

Derivation Internal stress force on a cross-section∫
σxx dS =

∫
z dS = 0, which is the z coordinate of

the center of mass.

Deformation for bent rod is

uz = − 1

2R
(x2 + σ(z2 − y2)), uy = −σzy

R
, ux =

zx

R
.

Derivation Length of neutral surface dx = R dϕ,

length away from neutral surface dx + dux = (R +

z) dϕ =⇒ uxx = z
R , uyy = uzz = σuxx, σxx = Euzz.

Integrate to get ux, uy, from that construct uz such

that uxz = uxy = uyz = 0.

Equation of equilibrium for a bent rod is

Fz = IEz(4). (Eq of equilibrium)

Its energy is F =
∫

1
2IE(z′′)2 +U(z, x) dx, its torque

My =
EIy
R .

Derivation Free energy: f = 1
2σikuik = 1

2σxxuxx.

Use
∫
z2 dS = Iy. Torque My =

∫
σxxz dS. Rewrite

F using 1/R = ± d2z
dx2

. Add potential U(z, x). Vary

with respect to z to obtain equation of equilibrium.

Opt: For bends in z and y direction add deriv to F .

2.8 Applications: Examples of Deforma-

tions

2.8.1 Rod bent by its own Weight

Boundary conditions for bent rod

• clamped z = 0, z′ = 0

• supported z = 0, z′′ = 0 (torque is zero)

Equation for a rod either clamped on one side or

supported on both sides

z =
ρg

24EI
x2(x− L)2 (clamped, 2 sides)

z =
ρg

24IE
x(x3 − 2Lx2 + L3) (supported, 2 sides)

z =
f

6EI
x2(3L− x) (clamped, 1 side)

Derivation Use Ansatz z = ρg
24IE (x4+C1x

3+C2x
2+

C3x+C4). Boundary conditions: clamped on 2 sides

z(0) = z(L) = z′(0) = z′(L) = 0, supported on 2

sides z(0) = z(L) = z′′(0) = z′′(L) = 0. For clamped

on 1 side use EIz(4) = −fδ(x − L), z(3) = − f
EI ,

where f is the force acting on the end, and BC z(0) =

z′(0) = z′′(L) = 0.

2.8.2 The Energy of a Deformed Rod

Coordinate system ξ, η, ζ, where ζ is parallel to

axis of rod.

Relative rotations are described by the vector dϕ.

Deformation is determined by dϕ
dl .

Energy can be written as

F =

∫
1

2
I1E

(
dϕξ
dl

)2

+
1

2
I2E

(
dϕη
dl

)2

+
1

2
C

(
dϕζ
dl

)2

dl

4



where the first two terms correspond to the previ-

ously derived elastic energy and the third term cor-

responds to the energy stored in twisting/torsion.

Derivation To obtain the bending elastic energy use

(ϕξ, ϕη) = τ = dr
dl ≈

dr
dx , then dτ

dl ≈ ( d2z
dx2

, d2y
dx2

).

Torsion for cylinder has deformations uxz =

−y
2

dϕ
dz , uyz = x

2
dϕ
dz . Energy and torque needed to

twist the top an angle ϕ0 (C is the torsional rigidity)

F =
C

2

∫ (
dϕ

dz

)2

dz, C =
π

2
µR4,

M = C
dϕ

dz
=
π

2

µϕ0R
4

l
.

Derivation Torsion by angle ϕ has ux = −yϕ(z),

uy = xϕ(z), divu = 0. This gives uxz, uyz,

other uik = 0. Stress σik = 2µuik, then F =∫
µu2

ik dz d2r = ... = πR4

2 µ
∫

1
2

(
dϕ
dz

)2
dz. For torque,

add energy due to external force V and vary F with

respect to ϕ. Use δV = −Mδϕ and integration

by parts for integral. δϕ is arbitrary, integral and

bracket need to vanish independently.

2.8.3 Deformation of an elastic Medium

when a Point Force is applied

Equation to solve ∇2u + 1
1−2σ grad divu =

−21+σ
E F δ(r).

Deformation in 1D and 3D

u =
1 + σ

8πE(1− σ)

(3− 4σ)F + n(n · F )

r
(3D)

u =
F

2C
|z| (1D)

Derivation In 3D : Solve by switching to Fourier

space k2u + 1
1−2σk(k · u) = 21+σ

E F . Multiply by k,

extract k · u = ... and insert back to original Fourier

equation to obtain expression for u(k) ∝ F /k2−k(k·
F )/k4. Transform back using 1/k2 → 1

4πr , k(k·F )→
−∇(F · ∇)f(r), k(k · F )/k4 → π2

(2π)3
∇(F · ∇)r =

1
8π
F−n(n·F )

r with n = r/r.

In 1D : Vary F =
∫ (

du
dz

)2
+ Fδ(z)udz to obtain u =

α|z|. Integrate this solution as C du
dz |

+0 + −0 = F to

get α.

2.8.4 Point Force applied to Surface

Equation to solve µ∇2u + (µ + λ) grad divu = 0

in cylindrical coordinates with BC σrz(z = 0) =

σϕz(z = 0) = 0, σzz − Pδ2(r).

uz = − α

2R

(
2µ+ λ

µ
+
µ+ λ

µ

z2

R2

)
ur =

α

2r

(
1− 2µ+ λ

µ

z

R
+
µ+ λ

µ

z3

R3

)
σzz = 3α(µ+ λ)

z3

R5

σϕϕ =
αµ

r2

(
1− 2z

R
+
z3

R3

)

Neutral angle for ur: sinβ = z
R =

√
1
4 + µ

µ+λ −
1
2

Neutral angle for σϕϕ: sinβ′ =
√

5−1
2 ≈ 38.2◦

Derivation Take div of equation to get ∇2 divu =

0. Use Ansatz divu = −α ∂
∂z

1
R = α z

R3 and uz =

αµ+λ
µ

∂2R
∂z2

with R =
√
r2 + z2 to solve initial equa-

tion in z component for uz by using 1/R = ∇2R/2

to eliminate ∇2. Add harmonic function to get

uz = γ
R − α

µ+λ
2µ

z2

R3 . Use divu = 1
r
∂
∂r (rur) + ∂uz

∂z to

solve for ur:
∂
∂r (rur) = r

(
divu− ∂uz

∂z

)
. Use rur = 0

at r = 0 as BC. BC at z = 0 states σrz = 2µurz = 0.

Use R ≈ r
(

1 + z2

2r2

)
to obtain γ = −α2µ+λ

2µ . Calcu-

late
∫
σzz d2r =

∫
z3

(z2+r2)5/2
d2r = 2π

3 and hence at

surface σzz(z = 0) = −Pδ2(r) we get α = − P
2π(µ+λ) .

For the neutral angle solve ur/ σzz for z/R = sinβ.

Interaction energy of two balls displacing the

surface Uint = F (u1 + u2) = −
∫
Pjδ

2(r −
r2)u1j dS = −Pu1z(r2) = −P 2

4π
2µ+λ
µ(µ+λ)

1
|r1−r2|

Derivation Define u = u1 + u2. Compute

λ( divu)2 + µ
(
∂ui
∂xk

+ ∂uk
∂xi

)2
for u1,u2. Extract

F (u1), F (u2), keep mixed terms and use partial in-

tegration on their integral such that one volume in-

tegral and two surface integral remain
∫

(−λ · ...−µ ·
...)u2j dV +

∫
(λ · ...+ µ · ...− Pjδ2(r − r1))u2j dS −∫

Pjδ
2(r − r2)u1j dS. The first integral vanishes be-

cause it is the equation equilibrium in the bulk, the

second integral vanished because it is the boundary

conditions at the surface.

3 Elastic Waves

3.1 Wave Equation

E = Eel + Ekin =
∫
T
2

(
∂u
∂x

)2
dx+

∫ ρ
2

(
∂u
∂t

)2
dx

5



Wave equation ∂2u
∂t2
− c2 ∂2u

∂x2
= 0 with c =

√
T/ρ

and general solution u = f(x− ct) + g(x+ ct).

Derivation Vary total energy or use Newton’s sec-

ond law F = ma.

3.2 Elastic Waves in isotropic medium

Eq of motion ρü = µ∇2u+ (µ+ λ) grad divu

Longitudinal waves satisfy rotul = 0, ρül =

(2µ+ λ)∇2ul and cl =
√

2µ+λ
ρ ∼

√
K
ρ .

Transverse waves satisfy divut = 0, ρüt = µ∇2ut
and ct =

√
µ
ρ .

Derivation Use u = ul + ut. For longitudi-

nal ∇2ul = grad divul − rot rotul = grad divul.

Speed of wave can be obtained by comparing coeffi-

cients.

Monochromatic plane waves u =

<
(
Ake

i(k·r−ωt)) have for longitudinal waves Ak ‖ k,

dispersion wl = clk while for transverse waves

Ak ⊥ k, dispersion wt = ctk.

Polarization for transverse waves u = A1 cosωt +

A2 sinωt. Linear polarization for A1 ‖ A2, circular

polarization A1 ⊥ A2, |A1| = |A2|.

3.3 Elastic Waves in Crystals

Equation of motion ρ∂
2ui
∂t2

= ∂σik
∂xk

= λiklm
∂2um
∂xk∂xl

Dispersion relation for Ansatz u(r, t) =

Aei(k·r−ωt) yields condition λiklmkkkl = ρω2δim.

Derivation Use ρ∂
2ui
∂t2

= ∂σik
∂xk

with σik = λiklmulm.

Pluck Ansatz into equation to obtain dispersion re-

lation.

Example: cubic crystal with λxxxx =

C11, λxxyy = C12, λxyxy = λxzxz = C44. For k =

(k, 0, 0) we get w2
l = C11

ρ k2, w2
t = C44

ρ k2.

3.4 Reflection at free Surface

Reflection mixes waves Purely longitudinal or

transverse waves are mixed at reflection. It must

hold that ω = ω′ due to continuity, k‖ = k′‖ due

to y-symmetry, hence k sin θ = k sin θ′. Since k =
ω
c , k
′ = ω

c′ we get sin θ
sin θ′ = c

c′ = n.

Reflection for waves of the form u = A0n0e
ik0·r +

Alnle
ikl·r +At(ẑ × nt)eikt·r we get with n = cl

ct

Al = A0
sin2 θt sin 2θ0 − n2 cos2 2θt
sin 2θt sin 2θ0 + n2 cos2 2θt

,

At = −A0
2n sin 2θ0 cos 2θt

sin 2θt sin 2θ0 + n2 cos2 2θt
.

Derivation Note that n0,x = nl,x = cos θ0, n0,y =

−nl,y = sin θ0 and ẑ × nt = (sinθt, cos θt). Use the

Ansatz to derive uxx, uxy (note how ull would look

like). From BC σxx = σyx = 0 and Hooke’s law σik =

2ρc2
tuik + ρ(c2

l − 2c2
t )ullδik. Equations for A0, Al, At.

For θ0 = 0, Al = −A0, At = 0, longitudinal reflected

wave.

3.5 Surface Waves

Ansatz u ∝ ei(kx−ωt)+χz with χ =
√
k2 − ω2

c2
and

boundary condition σiknk = 0.

Dispersion relation for reflected surface waves

ω = ctkξ with ξ < 1 the solution of (1 − 1
2ξ

2)4 =

(1 − ξ2)(1 − c2t
c2l
ξ2) that is within the range csurface =

ctξ < ct < cl.

Derivation Pluck Ansatz into equation to obtain

χ. σiz = 0, because n ‖ z. Then uiz = 0 and

σ(uxx + uyy) + (1 − σ)uzz = 0. Because of this and

the Ansatz uy = 0. Wave parts satisfy ∂utx
∂x + ∂utx

∂z =

0, ∂ulx
∂z −

∂ulz
∂x = 0. Use Ansatz (with constants

a, b for transverse/longitudinal respectively) to derive

utx, utz, ulx, ulz.

• BC1 : 0 = σxz ∝ uxz = ∂ux
∂z + ∂uz

∂x . Substitute in

ui/l,x/z to obtain a(χ2
t + k2) + 2bkχl = 0.

• BC2 : 0 = σzz = c2
l
∂uz
∂z +

(
c2
l − 2c2

t

)
∂ux
∂x . Use

u = ut +ul,
∂utz
∂z + ∂utx

∂x = 0, ω2 = c2
t,l(k

2 − χ2
t,l)

to obtain 2aχtk + b(k2 + χ2
t ) = 0.

BC1,2 compatible if (k2 + χ2
t )

2 = 4k2χlχt. Use

χ2
l,t = k2 − ω2/c2

l,t to get (2k2 − ω2/c2
t )

4 = 16k4(k2 −
ω2/c2

t )(k
2 − ω2/c2

l ). Note that ω ∝ k, hence Ansatz

ω = ctkξ. Pluck in and solve cubic equation in

x = ξ2. It follows the dispersion relation and

csurface = ctξ < ct < cl.
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4 Dislocations

4.1 Stress Estimation

σ = µ
2π sin 2πu

a gives maximal stress σmax = µ
2π ∼

µ
10 .

However, due to dislocations in reality σ ∼ 10−4µ.

Derivation Consider periodic crystal with distance

a. For small u strain is u
a , stress µua . Assume periodic

function σ ∝ sin 2πu
a , because upon displacement of

∼ a the lattice retains original form. For u � a

σ ∼ µua hence σ = µ
2π sin 2πu

a . Maximal stress σmax =
µ
2π ∼

µ
10 .

4.2 Definitions & Displacement Field

Along dislocation, u is a multivalued function,

derivative, however, are single-valued. The figure

shows one screw dislocation (a), and two edge dis-

locations (b,c).

Distortion tensor wik = ∂uk
∂xi

, uik = 1
2(wik +wki).

Burger’s vector bi = −
∮

dui = −
∮
∂ui
∂xk

dxk =

−
∮
Lwik dxk. It is independent of path. Dislocations

cannot end inside the sample.

Tau τ is the tangent vector at the given point of the

dislocation. It is along the direction of elongation of

the dislocation. The dislocation line is a curve along

which the angle between b, τ is changing.

Screw dislocations b ‖ τ

Edge dislocations b ⊥ τ

Equation of equilibrium containing dislocations

∂wki
∂xk

+
1

1− 2σ

∂wll
∂xi

= [τ × b]iδ2(ξ)

∆u+
1

1− 2σ
grad divu = [τ × b]δ2(ξ)

Derivation −bk =
∮
Lwik dxi =

∫
SL
eilm

∂wmk
∂xl

dSi.

Because eilm antisymmetric, ∂wmk
∂xl

symmetric,

eilm
∂wmk
∂xl

= 0 everywhere apart from the crossing

point of dislocation line with surface SL =⇒
eilm

∂wmk
∂xl

= −τibkδ2(ξ) or ∂wnk
∂xk

− ∂wkk
∂xn

= −[τ ×
b]nδ

2(ξ). Rewrite equation of equilibrium with wik
and insert.

4.3 Screw Dislocation

Deformation uz = b
2πϕ

Derivation u(x, y) ‖ z =⇒ divu = 0 =⇒ ∆uz =

0 =⇒ uz = b
2πϕ.

Energy of screw dislocation E = µb2

4π log R
b , where

R is either the system size or the size of the disloca-

tion.

Derivation uzϕ = b
4πr , σzϕ = 2µuzϕ and other com-

ponents zero. E = 1
2

∫
σikuik d2r.

4.4 Edge Dislocation

Deformation ux = b
2π

(
arctan y

x + 1
2(1−σ)

xy
x2+y2

)
uy = − b

2π

(
1−2σ

2(1−σ) log
√
x2 + y2 + 1

2(1−σ)
x2

x2+y2

)
Stress σxx = −bB y(3x2+y2)

(x2+y2)2
, σyy = bB y(x2−y2)

(x2+y2)2
,

σxy = bB x(x2−y2)
x2+y2

.

Energy of edge dislocations E = µb2

4pi(1−σ) log R
b

and F = 1
2b
∫ R

0 σxy(ϕ = 0) dx.

Derivation Equation to solve ∇2u+ 1
1−2σ∇ divu =

beyδ
2(r). Look for solution of the form u = u0 +w

with u0,x = b
2πϕ, u0,y = b

2π log r taking care of the

multivaluedness. Since divu0 = 0, ∆u0 = beyδ
2(r),

w is single-valued and satisfies same equation to

solve. Solve by switching to Fourier space with solu-

tion w = b
4π(1−σ)

∫
3−4σ
R ey + y

R3r dz′, R =
√
r2 + z′2.

Derive ux, uy from u = u0 +w. Derive σxx, σyy, σxy.

Energy is E = µb2

4π2(1−σ)

∫ y2

r4
d2r.

Cut Surface SD Define u as continuous function on

plane with cut surface SD sucht that u+−u−|SD = b.

Then F = 1
2

∫
R σijuij d2r = 1

2b
∫ R

0 σxy(ϕ = 0) dx.

4.5 Dislocation Motion

SD-surface is the surface where displacement jumps

u+ − u−|SD = b.

Change of volume δV = bδS = δx · [τ × b] dl. I.e.

screw dislocations never change the volume.
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Glide motion is parallel to τ , b, does not change

the volume δV = 0 and hence is easy motion.

Climb motion does change the volume δV 6= 0 and

hence is hard to achieve. For it to happen, atoms

have to diffuse.

4.6 Forces acting of Dislocations

Plastic deformation on moving dislocation by δr

δu
(pl)
ik = 1

2 (bi[δr × τ ]k + bk[δr × τ ]i) δ
2(r − rd).

Derivation On surface SD: u+ − u− = b, thus wik
has singularity there w

(S)
ik = nibkδ(ξ), where n is nor-

mal to surface ξ ‖ n. Dislocation motion is changing

SD, then by moving dislocation by δr we obtain the

above equation for plastic deformation.

Peach Köhler force fi = eiklτkσlmbm

Derivation Work due to external sources δR =∫
σextik δuik dV =

∮
σextik eilmδrlτmbk dl =

∮
fiδrl dl by

substituting δu
(pl)
ik . Force by comparing coefficients.

Interaction of two dislocations has the forces

fx = b1b2B
x(x2−y2)

r4
, fy = b1b2B

y(3x2+y2)
r4

. Aligned

along the same direction b1b2 > 0, there is an unsta-

ble eq point at x = y. Aligned the opposite direction

b1b2 < 0, the opposite case holds.

Derivation Use coordinate system such that τz =

−1, bx = b and pluck into Peach Köhler force. Use

expressions for σij from before. Point is in equilib-

rium in x-direction for x2 = y2 (unstable) and x = 0

(stable). However, |fy| always increases.

4.7 Peierls-Nabarro Force

Peierls-Nabarro force F = 2πµb
1−σ sin 2πx

b e
− 2π|y0|

b

Critical stress σmax = µe−π

Derivation xn = nb, ym = mb + b
2 . Start

with E = µb2

4π2(1−σ)
b2
∑

n,m
y2m

((x−xn)2+y2m)2
. Rewrite

E = − µb4

4π2(1−σ)

∑
m y

2
m

∂
∂y2m

∑
n

1
(x−nb)2+y2m

. Calcu-

late last sum using Poisson formula
∑

n
1

(x−nb)2+y2m
=

π
b|ym|

∑
k exp

(
i2πkx

b

)
exp

(
−2π|kym|

b

)
. Keep only

largest terms with k = ±1 and smallest ym to ob-

tain E ≈ µb2

1−σ cos 2πx
b exp

(
−π|y0|

b

)
. Use y0 = b/2 for

σmax. Calculate force F = dE
dx .

5 Hydrodynamics: Basic Equa-

tions

We need three quantities, the fluid velocity v(r, t)

and two thermodynamic quantities, e.g. the pressure

p(r, t) and the density ρ(r, t).

5.1 Continuity Equation

Continuity

∂ρ

∂t
+ div ρv = 0 (Continuity)

Derivation Change of mass ∂
∂t

∫
ρ dV is the flow out

of the surface −
∮
ρv · dS. Then Gauss’ theorem.

5.2 Euler’s Equation

Ideal Fluid A fluid without viscosity and thermal

conductivity is called ideal.

Euler’s equation

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ f (Euler’s)

∂

∂t
(ρvi) = −∂Πik

∂xk
+ ρf

Assumptions We neglect energy dissipation, inter-

nal friction (viscosity) and heat exchange.

Derivation F = −
∮
p dS =

∫
ρdv

dt dV and dv
dt =

∂v
∂t + (v · ∇)v

5.3 Hydrostatics & Convection

Hydrostatic equations α ∼ 6.5◦/km

p =p(0)− ρgz

p =p(0) exp
(
−mgz

T

)
(Boltzmann’s law)

p =p(0) exp

(
1− αz

T0

)mg/α

Derivation Fluid at rest: grad p = ρg (Euler’s

equation). For first equation (incompressible fluid)

direct integration, for second use ideal gas law ρ =
pm
T , for third use linear temperature decay T (z) =

T0 − αz.
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Why wind blows and current flows p, ρ deter-

mine temperature. Because ∂p
∂z = ρg p, ρ and T

should be functions of altitude z only.

Convection

−dT

dz
<
gβT

Cp
≈ 10 K km−1, β =

1

V

∂V

∂T

∣∣∣∣
p

Assumptions Substance expands on heating, shift

is adiabatic.

Derivation Adiabatically up-shifted fluid element

needs to be forced back down, i.e. must be heavier

than displaced fluid V (S(z − dz), z)|p < V (S(z), z)|p
or
(
∂V
∂S

)
p

dS
dz > 0. Then 0 < dS

dz =
(
∂S
∂T

)
p

dT
dz +(

∂S
∂p

)
T

dp
dz =

cp
T

dT
dz +

(
∂V
∂T

)
p
g
V , where V = 1

ρ , dp
dz =

−ρg, ∂S
∂T =

cp
T , because

(
∂V
∂S

)
p

= T
cp

(
∂V
∂T

)
p
.

5.4 Bernoulli’s Equations

Streamlines are lines such that dx
vx

= dy
vy

= dz
vz

.

Bernoulli’s Along streamlines it holds that

H +
1

2
v 2 = const. (Bernoulli’s)

ρgz + p+
1

2
ρv 2 = const.

Assumptions Isentropic motion, steady flow.

Derivation Define enthalpy per unit mass H =

U + pV . For isentropic motion (dS = 0) it holds

that dH = V dp = dp/ρ and Euler’s eq becomes
∂v
∂t + (v · ∇)v = −∇H. Be rewriting non-linear term
∂v
∂t + v × (∇× v) = −∇(H + 1

2v
2). Use steady flow.

Multiplying with unit vector along streamlines l ren-

ders the left side 0, hence ∂
∂l (H + 1

2v
2) = 0.

Torricelli law |v| =
√

2gh

Assumptions v(0) = 0, p(0) = p(−h), uncompress-

ible liquid.

Derivation Use gz + p
ρ + 1

2v
2 = const. (Bernoulli)

at z = −h and z = 0 with v(0) = 0.

5.5 Energy and Momentum Flux

Energy Flux Density

∂

∂t

(
ρE +

1

2
ρv 2

)
= ρv

(
h+

1

2
v 2

)
(Energy Flux Density)

Derivation We need to compute ∂
∂t

(
ρE + 1

2ρv
2
)
.

• ∂
∂t

(
1
2ρv

2
)
: Use continuity and Euler’s equations

and v · (v · ∇)v = v · ∇v 2

2 . Rewrite dh =

T ds+ V dp to ∇p = ρ∇h− ρT∇s. Final result
∂
∂t

(
1
2ρv

2
)

= −v 2

2 div (ρv) − ρv · ∇
(
h+ 1

2v
2
)

+

ρT (v · ∇)s.

• ∂ρE
∂t : Use dE = T ds − p dV = T ds + p dρ

ρ2
,

rewrite d(ρE) = E dρ + ρ dE = hdρ + ρT ds,

then ∂(ρE)
∂t = h∂ρ∂t + ρT ∂s

∂t . Use continuity eq,
∂S
∂t = dS

dt − (v · ∇)S and adiabaticity dS
dt = 0.

Final result ∂(ρE)
∂t = −H div (ρv)− ρT (v · ∇)S.

Combine ∂
∂t

(
ρE + 1

2ρv
2
)

= −div (ρv(H + 1
2v

2)).

Obtain flux from comparing coefficient in
∂
∂t

∫
(1

2ρv
2 + ρE) dV = −

∮
ρ(H + 1

2v
2)v · dS.

Momentum Flux Density Tensor

Πik = pδik + ρvivk (Momentum Flux)

Derivation Use continuity and Eulers to calculate
∂(ρvi)
∂t = ρ∂vi∂t + ∂ρ

∂t vi = −ρvk ∂vi∂xk
− ∂p

∂xi
− vi ∂(ρvk)

∂xk
=

− ∂p
∂xi
− ∂(ρvivk)

∂xk
. Obtain Πik from comparing to

∂(ρvi)
∂t = −∂Πik

∂xk
.

5.6 Circulation

Vorticity is defined as Ω = rotv.

Velocity circulation around a contour C is defined

as

Γ =

∮
C
v · dl.

Law of conservation of circulation for a small

fluid surface δS it holds that δS · rotv = const. or

dΓ

dt
= 0,

∮
v · dl = const. (Kelvin’s Theorem)

Derivation d
dt

∮
C v ·dl =

∮
C

dv
dt ·dl+

∮
C v ·

d dl
dt . Use

dl′ = r2 + v(r2) dt − r1 − v(r1) dt = dl + dt(dl ·
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∇)v why? , and v · (dl · ∇)v = dl · ∇v 2

2 and dv
dt =

− gradH (Euler’s) to render both parts zero (closed

contour integral over gradient vanishes). For other

representation
∮
v dl =

∫
rotv · dS = dS · rotv =

const.

Distance and vorticity equations

dr

dt
= (r · ∇)v,

dΩ

dt
= (Ω · ∇)v

Derivation Position: from geometric considerations

of previous derivation with dl. Vorticity: start by

Euler’s as in the derivation of Bernoulli’s equation
∂v
∂t −v×(∇×v) = −∇(H+ 1

2v
2), take rot to obtain

∂Ω
∂t = rot (v × Ω). Use ∇ × (A × B) = ... rule to

get rot (v × Ω) = (Ω × ∇)v − (v · ∇)Ω and hence

(Ω×∇)v = ∂Ω
∂t + (v · ∇)Ω = dΩ

dt .

Vortex lines

rotv = Ω = const. =⇒ v =
Ω× r

2

rotv = Ω0δ
2(r), div v = 0 =⇒ v =

Ω0 × r
2πr2

We use a cutoff (vortex core radius) at distance a.

6 Potential Flow

6.1 Incompressible and irrotational Flows

Pressure and density ∆ρ = ∆p
c2

, c =

√(
∂p
∂ρ

)
S

.

Derivation For longitudinal waves cl =
√
K/ρ.

E = 1
2V K( div u)2 = 1

2V K( δVV )2 with compres-

sion modulus K. From thermodynamics K =

V
(
∂2E
∂V 2

)
S

= −V
(
∂p
∂V

)
S

= ρ
(
∂p
∂ρ

)
S

.

Incompressibility means ρ = const. or div v = 0.

It is fulfilled if v ∼ l
τ � c, where l is the typical

length scale of velocity change for time scale τ .

Derivation Continuity eq for constant density be-

comes div v = 0. Bernoulli ∆p ∼ ρv 2, thus ∆ρ =
∆p
c2
∼ ρv

2

c2
, thus δp/p � 1 iff v � c. In nonsteady

flow ∂ρ
∂t ∼

δρ
t ∼

δp
τc2
∼ ρvl

τ2c2
� ρ div v ∼ ρv

l iff l/c� τ .

Potential flow or irrotational flow for rotv = 0.

Define the velocity potential v = gradϕ. Euler’s

equation becomes (if ϕ′ absorbs the constant of inte-

gration)

0 = grad

(
∂ϕ

∂t
+

1

2
v 2 +H

)
=
∂ϕ′

∂t
+

1

2
v 2 +H.

Small oscillations can often be described by an

irrotational flow, i.e. rotv = 0.

Derivation Nonlinear term can be neglected, Eu-

ler’s eq ∂v
∂t = −∇H. Take rot to see ∂Ω

∂t = 0, so

rotv = const., but since avg is zero rotv = 0.

Bernoulli’s equation for steady potential flows be-

comes H + 1
2v

2 = const. everywhere.

Derivation Use Euler’s eq in potential flow 0 =

grad
(
∂ϕ
∂t + 1

2v
2 +H

)
and steady flow ∂ϕ

∂t = const.

Incompressible potential Flow solves this equiv-

alent system of equations

div v = 0, rotv = 0, BC vn = 0,

∇2ϕ = 0, BC
∂ϕ

∂n
= 0.

Solutions for an arbitrary shape has in general

Ai = αikuk, where αik depends on the body shape.

ϕ = −A · n
r2

, n =
r

r

v = 3
(A · n) · n−A

r3

Derivation Solve by electrostatic analogy. Solu-

tions of Laplace’s eq that vanish at infinity are 1/r,
∂n

∂xn (1
r ). Symmetry requires that ϕ ∝ u. Hence

ϕ = A(u · ∇(1
r )) = −Au·n

r2
.

Solutions for a sphere At the surface of a sphere

with A = R3

2 u.

ϕ = −R
3

2r2
(u · n)

v =
R3

2r3
(3n(u · n)− u)

p = p0 −
ρu2

8
(9 cos2 θ − 5) + ρRn · u̇

Derivation At surface of sphere v ·n = u ·n. Multi-

plying the general v from above by n yields A = R3

2 .

Incompressible H = p/ρ, then p = p0 − 1
2ρv

2 − ρ∂ϕ∂t .
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Solution moves with sphere ϕ = ϕ(r − ut,u), calcu-

late ∂ϕ
∂t = −u gradϕ + ∂ϕ

∂u · u̇. Use this and v from

above to get p(r = R).

Energy and Force for a body of arbitrary shape in

a potential flow, Ai = αikuk,

E =
1

2
mikuiuk (Energy)

mik = ρ(4παik − V0δik) (Mass tensor)

Fi = − d

dt
(mikuk) = −dPi

dt

Derivation (Conceptually) E = 1
2ρ
∫
v 2 dV for a

sphere containing the body. Rewrite v 2. Use incom-

ressibility, u = const., div (fa) = A grad f +f diva,

Gauss’ theorem, the explicit solutions for ϕ and v

from above, infinitely large sphere to kill one integral

and integral averaging. Force by dE = −F · udt,

comparing to E.

6.2 The Force acting on a Body in Poten-

tial Flow

Forces parallel to u are called drag forces, perpen-

dicular to u are called lift foces.

d’Alembert’s Paradox Using previous results, in a

potential flow with constant velocity u we get dp
dt = 0,

hence all forces vanish.

Derivation Alternative 1 : In potential with con-

stant velocity u we get F = dP
dt = 0.

Alternative 2 : Fi = dP
dt = ∂

∂t

(∫
pvi dV

)
=∮

Πik dSk = −
∫
S(pδik + ρvivk) dSk = 0. First term

vanishes, because pressure is constant along all direc-

tions, second term in the infinite surface limit.

Alternative 3 : For F assume u̇ = 0, then under time

reversal pressure must not change (symmetry from

Eulers eq). This must equal the situation for a space

inverse symmetry, where flow direction and pressure

invert. Hence F =
∮
pdS = 0.

Equation of motion for u in pot flow as reaction

to an external force f

d

dt
(Mδik +mik)uk = fi.

Eq of motion for v in pot flow when the body

moves with velocity u

(Mδik +mik)uk = (mik + ρV0δik)vk.

Derivation If the body moved as fast as the fluid

u = v, then dMui
dt = ρV0v̇i. If the velocities differ,

consider additionally the reaction force d
dt(m)ik(vk −

uk)). Integrate equation and set constant to zero.

6.3 Two-dimensional Flow

Definition (Stream function Ψ) defined as

vx =
∂Ψ

∂y
, vy = −∂Ψ

∂x
.

Stream lines dΨ = vx dy − vy dx = 0

Flux through lines
∫ b
a vn dl = Ψ(b)−Ψ(a)

6.4 Potential Flow in 2D

2D Potential Flow satisfies the Cauchy-Riemann

conditions for ϕ and Ψ vx = ∂ϕ
∂y = ∂Ψ

∂y , vy = ∂ϕ
∂x =

−∂Ψ
∂x , and states that the following expression must

be analytic

W = ϕ+ iΨ with
dW

dz
= ve−iθ.

Stagnation point has v = 0.

Uniform flow W = (vx − ivy)z

Pot flow near stagnation point W = 1
2kz

2

Derivation Because at stagnation point v = 0, Tay-

lor expand ϕ = Sij
xixj

2 , then div v = Sii = 0. In

principal axes ϕ = k
2 (x2 − y2). Then vx = kx, vy =

−ky and Ψ = kxy. Together W = kz2

2 (hyperbolae).

Conformal Transformations Velocities of the

form W = Azn, z = reiθ have bounaries at θ = 0

and θ = π
n .

Derivation ϕ = Arn cosnθ, Ψ = Arn sinnθ. Zero

flux coincides with streamlines, so θ = 0, π/n could

be seen as boundaries.

Velocity modulus v = |dwdz | = n|A|rn−1 either

turns to 0 (n > 1) or to infinity (n < 1).
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7 Viscosity

7.1 Viscosity, Navier-Stokes Equation

Viscous stress tensor σ′ik describes internal fric-

tion and is given by

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi

)
+ η′δik

∂vl
∂xl

.

= η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3

∂vl
∂xl

)
+ ζδik

∂vl
∂xl

where in the second representation the first part is

traceless.

Derivation Internal friction occurs when the fluids

moves with different velocities (=gradient). We as-

sume small gradients and hence a linear dependence.

Rotational velocities should not result in internal fric-

tion, thus σ′ik should depend only on symmetric com-

binations of spatial derivatives.

Viscosity are the coefficients η, η′. ζ is called the

second viscosity.

Kinematic viscosity is the ratio ν = η/ρ.

Navier-Stokes

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+η∇2v+(η+η′) grad div v

(Navier-Stokes)

Boundary condition Navier-Stokes requires two

boundary conditions. We set v = 0.

Derivation Use Euler’s equation in the moment flux

form, add viscosity term and collect terms.

7.2 Energy Dissipation in an incompress-

ible Fluid

Energy dissipation in an incompressible fluid

dEkin
dt

= −1

2
η

∫ (
∂vi
∂xk

+
∂vk
∂xi

)2

dV

Derivation ∂
∂t

(
1
2ρv

2)
)

= ρv · ∂v∂t , substitute ∂v
∂t

from NSE, writing viscous part as vi
∂σ′
ik

∂xk
. Use re-

verse product rule trick and div v = 0 to rewrite all

but one terms into −div (ρv(v 2/2 + p/ρ) − v · σ′).
Integrate over volume, use Gauss’ theorem and use

taking volume to infinity trick to kill surface inte-

gral. For −
∫
σ′ik

∂vi
∂xk

symmetrize velocity derivative

and combine with σ′ik. It follows that η > 0.

7.3 Applications

7.3.1 Viscous Flow in a Pipe

Hagen-Poiseulle

Q =
π∆p

8ηl
R4 (Hagen-Poiseulle)

Derivation Solve Navier-Stokes for a pipe along

x-axis in cylindrical coordinates. Use v =

(vx(x, y), 0, 0). y, z component gives p = p(x), x com-

ponent gives dp
dx = const., hence dp

dx ≈
∆p
l . Integrate

v in cylindrical coordinates, log part vanishes, to ob-

tain v = ∆p
4ηl (R

2 − r2). Calculate flux Q = ρ
∫
v d2r

using solution.

7.3.2 Couette Flow: Flow between rotating

Cylinders

Couette Flow between cylinders rotating with ve-

locity Ω1 (inner) and Ω2 (outer). Velocity field v and

moment of frictional forces M1,2.

v =
Ω2R

2
2 − Ω1R

2
1

R2
2 −R2

1

r +
(Ω2 − Ω1)R2

1R
2
2

R2
2 −R2

1

1

r

M1 = −M2 = −2πη(Ω1 − Ω2)R2
1R

2
2

R2
2 −R2

1

Derivation Coordinate system vz = vr = 0, vϕ =

v(r), p = p(r). It holds that
∂eϕ
∂ϕ = −er, ∂

2eϕ
∂ϕ2 = −eϕ

and (v · ∇)v = −v 2

r er. Radial part NSE dp
dr =

ρv 2

r , angular part 0 = η∇2v = η
(

d2v
dr2

+ 1
r

dv
dr −

v
r2

)
.

Ansatz of the form rn leads to v = ar + b
r . Use BC

v(R1/2) = Ω1/2R1/2 to solve for a, b. Frictional force

fi = −σ′iknk. Use [σ′rϕ]r=R1 = η
[
∂v
∂r −

v
r

]
r=R1

=

−2η
(Ω1−Ω2)R2

2

R2
2−R2

1
. Total moment is found by multiply-

ing with 2πR1.

7.3.3 River Flow

River Flow

p(z) = p0 + ρg(h− z) cosα

v(z) =
ρg sinα

2η
z(2h− z)

Derivation Coordinate system (v · ∇)v = 0, vx =

v(z), vy = vz = 0, p = p(z). NSE for x axis

12



dp
dz + ρg cosα = 0, z axis η d2v

dz2
+ ρg sinα = 0. BC

at bottom v(0) = 0, BC at top σxz(h) = η dv
dz = 0,

σzz = −p(h) = −p0

Reality check For water ν = η
ρ ∼ 10−2 cm2 s−1.

For a rain paddle with h = 1 mm we get v ∼ 5 cm s−1.

For a slow river with h = 10 m, α ∼ 0.1 km
1000 km =

10−4 we get v(h) ∼ 100 km s−1, which is unrealistic.

Stability check Non-linear term and hence

Reynolds number vanish. How much perturbation

is needed to make Re ∼ 1? Re(β) ∼ gαh
3β
η2

, where

90◦ − β denotes the angle between v and ∇v. For

the rain paddle Re(β) ∼ 100β, for the river Re(β) ∼
1012β. The river is unstable with respect to this sym-

metry.

Derivation Use small angle approximation to get

Re(β) = v(h)hβ
η

7.4 The Law of Similarity: Reynolds

Number

Reynolds Number is the only dimensionless com-

bination of the three parameters that determine v,

Re =
uL

η
. (Reynolds Number)

Then v(r) = f( rL ,Re)u.

Physical meaning is that of dominance of different

terms in the Navier-Stokes equation. It holds that

Re large =⇒ η∇2v � ρ(v · ∇)v.

Similar flows are flows that can be obtained from

one another by rescaling v and r.

8 Laminar Flows

Laminar flows are flows where the layers of particle

movements do not mix. It is characterized by a small

Reynolds number.

8.1 Velocity and Pressure of laminar

Flows

Velocity and pressure for flows with small

Reynolds number.

v = −3R

4

u+ n(u · n)

r
− R3

4

u− 3n(u · n)

r3
+ u

p = p0 −
3

2
η
u · n
r2

R

Derivation Steady NSE with low Re is η∇2v = ∇p.
Reference frame of the sphere s.t. v = u + v′ with

v′ → 0 at infinity. div v = 0 =⇒ div v′ = 0 =⇒
v′ = rotA. A must be axial and linear in u, hence

A = f ′(r)n × u with f ′(r)n = grad f(r). Then

v′ = rotA = ∇ × [∇f(r) × u] = rot rot (f(r)u).

Then rotv = ... = −(∇2∇) × u. Take rot of NSE

to get 0 = ∇2 rotv = ∆2∇f × u. Cannot always be

parallel to u so 0 = ∆2f = 1
r2

d
dr

(
r2 d

dr∆f
)
. Then

∆f = 2a
r + c and f = ar + b

r . Take rot twice to get

v = u + rot rot (fu). Obtain a, b from BC u(r =

R) = 0. Finally f = 3Rr
4 + R3

4R . Obtain pressure

from grad p = η∇2v = η∆( grad div (fu)− u∆f) =

grad [η∆ div (fu)].

8.2 Stokes Formula for the Drag

Stokes Formula

Fx = 6πηuR (Stokes Formula)

Derivation Alternative 1 : Drop non-linear term.

Viscous force can then only depend on η, L, v. Use

dimensional estimate to get F ∼ νρvL = ηvL.

Alternative 2 : On solid surface v = 0 and Fi =

−σiknk = pni − σ′iknk. Then Fx =
∮

(−p cos θ +

σ′rr cos θ−σ′rθ sin θ) dS. Use p(R) = −3ηu
2R cos θ, σ′rr =

2η ∂vr∂r = 0, σ′rθ = −3ηu
2R sin θ to obtain Fx = 3ηu

2R

∫
dS.

8.3 The Layer around a moving Body

Summary of the three regions.

• Outside the boundary layer : Onseen equation,

non-linear term cannot be neglected anymore,

corrected Stokes formula, roughly potential flow

• Within boundary layer, outside wake: non-linear

term can be neglected
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• Inside the wake: laminar, viscosity important,

vorticity, diffusion-like NSE

8.3.1 Inside the Boundary Layer

Boundary Layer is the boundary outside of which

the non-linear term cannot be neglected anymore

even for flows with low Reynold’s number. Its bound-

ary width is given by

r � ν

u
. (Boundary Layer)

Derivation Estimate (v · ∇)v ∼ (u · ∇)v ∼ u2R
r2

and ν∇2v ∼ νuR
r3

and compare (v · ∇)v � ν∇2v.

Alternative Re� 1 ⇐⇒ ur
η � 1 ⇐⇒ r � η

u ∼
ν
u .

8.3.2 Outside the Boundary Layer

Onseen equation for flows with low Reynolds num-

ber outside of the boundary layer

(u · ∇)v = −∇p
ρ

+ ν∇2v (Onseen)

Derivation Approximate non-linear term.

Correction to Stokes formula for a sphere and

for a cylinder moving perpendicular to its axis

F = 6πηuR

(
1 +

3

8
Re

)
= 6πηuR

(
1 +

3uRρ

8η

)
F =

4πηu

ln(3.70ν/uR)

8.3.3 Inside the laminar Wake

Wake is due to fluid particles that move along the

streamlines passing close to a body. Pressure gradi-

ents force the particle around the body, but because

of the internal friction it cannot fall back to its orig-

inal height. The new height marks a line, the wake.

Navier-Stokes inside wake and its solution.

Equation is diffusion-like

u
∂vx
∂x

= ν

(
∂2

∂z2
+

∂2

∂y2

)
vx

vx ∝
1

νx
exp

(
−uz

2 + y2

4νx

)

Derivation Write NSE in x coordinate. Approxi-

mate (v · ∇)v ∼ (u · ∇)v = ux
∂v
∂x . Pressure doesn’t

change much across the wake =⇒ ∂p
∂x ∼ 0. Solve

by switching to Fourier space. Then u∂vx(k)
∂x =

−ηk2vx, hence vx(k, x) ∝ exp(−ηk2x/u). Upon re-

transforming vx follows as above.

Transverse size is the width of the wake

width ∼
√
ν · distance from body

u

Derivation x is distane away from body with width

y of wake. ∂2v
∂x2
� ∂2v

∂y2
, ∂

2v
∂z2

, hence (v·∇)v ∼ u∂v∂x ∼
uv
x

and η∇2v ∼ η ∂2v
∂y2
∼ ηv

y2
. Compare to get y ∼

√
ηx
u ∼

x
√

η
ux � x.

Wake is laminar because Re ' vxy
ν ∼ x

−1/2 → 0.

8.4 Drag and Lift with a Wake

Drag and lift

Fx = −ρu
∫∫

Wake
vx dy dx (drag)

fy = ρu

(∫
x0

−
∫
x

)
vy dy = ρu

∮
v · dl (lift)

Derivation Start by Fi =
∮

Πik dSk =
∮

(p0 +

p′)δik + ρ(ui + vi)(uk + vk) dSk, where p0 = const. is

pressure at infinity. Neglect constant and quadratic

in v terms (v � u). Write
(∫∫

x0
−
∫∫
x

)
dy dz ≡∮

dSk. Outside wake integral vanishes, because

p′ ≈ −ρuvx (Bernoulli), hence the integrals reduce

to the wake only. For the lift use same Ansatz

ρu
(∫∫

x0
−
∫∫
x

)
vy dy dz. Add constant vanishing in-

tegrals at y = ±const to make it a line integral.

Fy =
∫
fy dz.

Lift of wing explained with v2 > v1 =⇒ p2 < p1.

However fluid particles do not meet again at the end

of the wing.

9 Turbulent Flows

9.1 Symmetry Breaking

Symmetries are broken with increasing Reynolds

number in the following order:
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1. Left-right symmetry is broken,

2. time invariance discretizes, i.e. solution become

periodic,

3. up-down symmetry is spontaneously broken (von

Karman vortex street),

4. z-axis translation symmetry is broken,

5. flows become chaotic,

6. symmetries are restored in a statistical sense.

9.2 Instabilities

Instabilities occur when small perturbations am-

plify. For solutions v1 = A(t)v1(r), we can make a

Landau expansion

d|A|2

dt
= 2γ1|A|2 − α|A|4 − . . .

and get for α > 0

|A|max ∝ (Re− Recritical)
1/2.

For α < 0, we add a term of sixth order −β|A|6 and

get

|A|max ∝
|α|
2β
±

√
α2

4β2
+ 2

γ1

β
.

Derivation Steady solution v0(r), small perturba-

tion v1(r, t). Pressure p = p0 + p1(r, t). Substi-

tute into NSE, linearize (drop (v1 · ∇)v1) to get the

Eigen value problem ∂v1
∂t + (v0 · ∇)v1 + (v · ∇)v0 =

−∇p1ρ + ν∆v1 and div v1 = 0 with BC v1 = 0.

Fourier series v1 =
∑
vω(r)e−iωt = A(t)v1(r). Un-

stable if for one =ω > 0. Write A(t) ∝ eγ1t−ıω1t

for short times (after that: saturation). Expand
d|A|2

dt = 2γ1|A|2 + −α|A|4 + O(6) (odd terms van-

ish from averaging). Solve for α > 0 and maximize.

Expand γ1 near Rec s.t. γ1 ∝ Re − Rec. For α < 0

add −β|A|6 term.

Kelvin-Helmholtz instability occur between two

tangential layers traveling with different velocities.

Small asymmetries lead to larger/smaller velocities.

This leads to to smaller/larger pressure. This makes

the velocities even larger/smaller and so on.

9.3 Developed Turbulence

Behavior at large Re is important because for

example already a small river has Re ' 106.

Mean dissipation energy Energy dissipation re-

mains constant in the limit Re→∞ although ν → 0.

It is given by

ε = 〈ν(∇αvβ)2〉 = 〈v · f〉 ∼ u3

R

where R is the radius of the body.

Derivation Estimate: Fluid with large Re, body

with radius R. During time τ ∼ R
u body gets mo-

mentum p ∼ ρR3u from fluid. Drag force F ∼ p
τ ∼

ρR2u2. Then ε = Fu
ρR3 .

Quantitative: Add random force f(r,t)
ρ to NSE with

〈fα(t, r)fβ(t′, r′)〉 = δ(t − t′)χαβ(r − r′). Multiply

NSE by v and integrate to obtain ∂
∂t

∫
v 2

2 ddr =

−ν
∫

(∇αvβ)2 ddr +
∫
f · v ddr = - dissipation + en-

ergy injection. For stationary state mean energy is

constant.

Energy cascade picture Energy is injected into

large scale motion ∼ L (energy containing scale).

Large eddies break into smaller and even smaller ed-

dies without loss of energy. These tiny eddies at vis-

cous scale ∼ λ dissipate energy (dissipative scale).

The ratio L/λ grows as Re increases.

9.4 Kolmogorov Theory of developed

Turbulence

Scale dependent Reynolds number Rel = vll
ν .

Viscosity becomes important for Reλ ∼ 1.

Initial range is the region λ� r � L. Assumption

is that all properties are independent on viscosity.

Kolmogorov Obukov law relates velocity varia-

tions over distances

∆v(l) ∼ (εl)1/3. (Kolmogorov Obukov)

Separation of two point of fluid grows with time as

δl2(t) ∝ t3. (Richardson)

Dissipative scale λ is given by λ ∼ L
Re4/3

� L.

Derivation KO law: From dimensional estimate ε ∼
(δu)3

l . Richardson: Use l3 ∼ v3t3 ∼ εlt3. Scale: Write

Rel ∼ ∆v(l)l
ν ∼ ... ∼ (εL)1/3

ν L
(
l
L

)4/3 ∼ Re
(
l
L

)4/3
.

Use Reλ ∼ 1 to determine λ.

Kármán–Howarth equation ∂
∂t〈v(x)v(y)〉 =

1
2∇x〈(v(x) − v(y))(v(x) − v(y))2〉 − 2ν〈∇αvβ(x) ·
∇αvβ(y)〉+ χαα(x−yL )
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Derivation TODO

Kolmogorov’s 4/5 law is given by S
‖
3(r) =

− 12
d(d+2)εr. In 3D it becomes

S
‖
3(r) = −4

5
εr

i still dont know what S
‖
3(r) is

Derivation TODO

9.5 Intermittency

TODO

9.6 The Energy Spectrum

TODO

10 Waves

10.1 Gravity Waves

We are interested in the potential ϕ such that v = ∇ϕ
and the dispersion relations.

Equation to solve is

∇2ϕ = 0,

(
∂ϕ

∂z
+

1

g

∂2ϕ

∂t2

)
z=0

= 0

with boundary condition ∂ϕ
∂z |z=−h = 0.

Derivation Neglect non-linear term: if the ampli-

tude a � λ (estimate as (v · ∇)v ∼ v2

λ ∼ va
λτ

and ∂v
∂t ∼

v
τ ). Assume incompressible pot flow, i.e.

rotv = div v = 0, hence ∇2ϕ = 0. Rewrite Eu-

ler’s without non-linear and ϕ, s.t. there is a ∇ be-

fore all terms. Kill ∇ to get expression for the pres-

sure. Then at surface p0 = −ρ
(
gξ + ∂ϕ

∂t

)
. Redefine

ϕ → ϕ + p0t/ρ. Take time derivative, use vz = ∂ξ
∂t

and vz = ∂ϕ
∂z .

Deep water Trajectories are circles, dispersion is

non-linear.

ϕ = Aekz cos(kx− ωt), ω =
√
gk

Shallow water Trajectories are ellipses, dispersion

is linear ω2 = kg tanh(kh) ≈ ghk2 for kh� 1.

ϕ = A cosh(k(z + h)) cos(kx− ωt), ω =
√
ghk

Derivation Use Ansatz ϕ = f(z) cos(kx−ωt). Then

∇2ϕ = 0 results in f(z) = ekz for deep water (BC

f → 0 for z → −∞) and f(z) = cosh(k(z + h))

for shallow water (BC f ′(z = −h) = 0). Second eq

results in dispersion rel ω2 = gk.

Damping of gravity waves Amplitude of wave de-

creases as exp(−γt), where γ = 2νω4

g2
is the damping

coefficient.

Derivation Change in energy dE
dt =

−2η
∫ ( ∂2ϕ

∂xi∂xk

)2
dV = −2η

∫
(ϕ2

xx + ϕ2
zz + 2ϕ2

xz) dV.

Use averaging dE
dt = ω

2π

∫ 2π/ω
0

dE
dt dt =

−8ηk4
∫
ϕ2 dV. Average energy E =∫

ρv2 dV = 2ρk2
∫
ϕ2 dV. Damping coefficient

γ = Ė
2E = 2νk2 = 2νω4

g2
.

Alternative: Dimensional guess for dispersion rela-

tion. For deep water, the parameters are ω, k, g. For

shallow water, h additionally.

Circle expansion ω2 = gk ⇐⇒ r = gt2: the

circles expand with the acceleration of the free fall.

10.2 Dispersive Waves

Circular Waves on the Deep Water the defor-

mation and the radius of the n-th ripple are

ξ ∝ gt2

r3
cos

(
gt2

4r

)
, rn =

gt2

8πn

Derivation Use Ansatz ϕ ∝ ekzeik·r−iωt. Use

∇2ϕ = 0, g ∂ϕ∂z + ∂2ϕ
∂t2

= 0 to derive dispersion

ω2 = gk. Integrate all k to get ϕ(z = 0) ≈
ζ =

∫
eik·r−i

√
gkt d2k =

∫
eikr cos θ−i

√
gktk dk dϕ. Use

method of stationary phase f(t) =
∫
eith(x) dx ≈√

2π
t|h′′(x0)|e

ith(x0)ei
π
4

sgn(h′′(x0)). Determine h(k), cal-

culate derivatives and pluck into solution first for k

integral, then for ϕ integral to obtain sol above.

Group velocity is given by ∂ω
∂k sucht that

ϕ(r, t) = eik·r−ω(k)tf

(
r − ∂ω

∂k
t

)

Derivation Use Ansatz ϕ = eik·rf(r) with f(r) =∑
q�k fqe

iq·r slowly varying. Taylor ω(k + q) =

ω(k)−∂ω
∂kq to obtain ϕ(r, t) = eik·r−iω(k)tf

(
r − ∂ω

∂k t
)
.
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Kevin angle: Ship Waves have a group velocity

of vgr = 1
2

√
g
k . Then the maximal angle θ0 of the

ship wave cone is θ0 ≈ 19.5◦ (Kelvin angle).

Derivation Sum over all rings h ∝
∫ 0
−∞ ht dt,

ht ∝ exp(iu(t)), u = gt2/4r(t). Determine r

from triangle including source of wave, position of

ship now and position of interest, then r(t) =√
R2 + v2t2 + 2Rvt cos θ, where θ is the angle and

R the distance between the ship now and the point

of interest. Use method of stationary phase (largest

contribution comes from region near extremum) 0 =

u̇ = ... ∝ v2t23Rvt cos θ + 2R2. Roots negative for

sin θ < sin θ0 = 1/3.

Capillary Waves are surface waves that take the

change of surface energy into account. The general-

ized wave equation and its dispersion relation are

0 =

[
ρg
∂ϕ

∂z
+ ρ

∂2ϕ

∂t2
− α ∂

∂z

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)]
z=0

ω2 = gk +
α

ρ
k3.

For k � k∗ =
√
ρg/α we get capillary waves with

ω2 = αk3/ρ.

Derivation Molecules at surface have higher en-

ergy. Change of surface S =
∫ √

1 + (∇2ζ)2 dx dy ≈∫
1 + 1

2(∇ζ)2 d2r, then δS =
∫
∇ζ∇δζ d2r =

−
∫
∇2(ζ)δζ d2r. Balance change of surface en-

ergy by pressure αδS −
∫
pδζ dS = 0 to get p =

−α
(
∂2ζ
∂x2

+ ∂2ξ
∂y2

)
. Add to equation from gravity waves

p = −ρ(gζ + ∂ϕ
∂t ). Take time derivative from ob-

tained expression and use ∂ζ
∂t = vz = ∂ϕ

∂z to get

the above generalized wave equation. Use Ansatz

ϕ = Akkz cos(kx− ωt) to obtain dispersion.

Rayleigh-Taylor or: why does water pour out of

overturned glass? w(k) =
√
−gk + α

ρ k
3 is imaginary

for small k ∼ 1
r , where r is the radius of the glass,

and unstable with respect to ripple formation.

10.3 Sound

Equation of sound waves for adiabatic motions

with small rel changes p = p0 + p′, ρ = ρ0 + ρ′ with

constant eq p0, ρ0 and p′ � p0, ρ′ � ρ0.

∂2X

∂t2
− c2∇2X = 0 with c =

√(
∂p

∂ρ

)
S

where X = ρ′, ϕ,v, p.

Dispersion for sound waves obeying the above

equation is linear

ω = ck.

Derivation Assume small relative changes, then for-

mulae for p, ρ follow. Continuity eq ∂ρ′

∂t +ρ0 div v = 0,

Euler’s eq ∂v
∂t + 1

ρ0
∇p′ = 0 (oscillations are small,

non-linear term drops out). For adiabatic motion

p′ =
(
∂p
∂ρ

)
S
ρ′. Take ∂

∂t of continuity eq, div of Eu-

ler’s eq and combine to obtain wave equation for ρ′.

Solution for 1D sound wave is ϕ = f1(x − ct) +

f2(x+ ct)

Sound waves are longitudinal v = gradϕ, only

vx non-zero =⇒ v ‖ k.

Sound wave pressure variation p′ = ρ0vc ⇐⇒
ρ′

ρ0
= v

c is larger than in an incompressible flow where

from Bernoulli p′ ∼ ρ0v
2 ⇐⇒ ρ′

ρ =
(
v
c

)2
.

Derivation For ϕ = f(x− ct), v = ∂ϕ
∂x = f ′(x− ct),

p′ = −ρ0
∂ϕ
∂t = ρ0cf

′(x − ct). Equate f ′ and use

p′ = c2ρ′. Note that we assume ρ′ � ρ.

Isothermal speed of waves
(
∂p
∂ρ

)
S

= γ
(
∂p
∂ρ

)
T

with γ =
cp
cv

. For p = nkBT = ρkBT
m we get

c =
√
γ kBTm .

Motion is adiabatic if the displacement during one

period of oscillation is much less than the wavelength

of the oscillation, i.e. l� λ.

Derivation If molecules move diffusion like with ve-

locity vth, then 〈R2〉 ' vthlt, where l is the mean free

pass. Thermal equilibrium is slow if vthlT = 〈R2〉 �
λ2, then vthl� cλ and use c ' vth.

Spherical Wave obey the equation of motion ∂ϕ
∂t2

=
c2

r2
∂
∂r

(
r2 ∂ϕ

∂r

)
with general solution ϕ = f1(r−ct)

r +

f2(r+ct)
r . Amplitude decreases as 1/r, intensity as

1/r2.

Sound in a moving Medium has the dispersion

relation

ω = c|k|+ u · k

and velocity of propagation ∂ω
∂k = ck

k + u.

Derivation Consider moving reference frame K and

system moving with the fluid K ′. Then r′ = r − ut.
Insert into Ansatz ϕ ∝ exp(ik · r′ − ikct).
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Doppler Effect, moving observer ω = ck−u·k =

ω0(1− u
c cos θ).

Doppler Effect, moving source ω = ω0
1−u

c
cos θ .

Derivation Moving observer : K ′ of source (sys-

tem at rest) with frequency ω0 = kc. K system

moving with observer fluid has velocity −u. Thus

ω = ck − u · k.

Moving source: K ′ of source (system moving) with

frequency ω0 = ck(1 − u
c cos θ), fluid moves with ve-

locity −u. K system of observer (at rest) has ω = ck.

Thus ω = ω
1−u

c
cos θ .

A Vector Identities & Indices

Vector Identitites

rot gradv = 0

div rotv = 0

rot rotv = grad div v −∇2v

(v · ∇)v = ∇
(
v 2

2

)
− v × rotv

Index notations

div v =
∂vk
∂xk

[ grad f ]i =
∂f

∂xi

[(v · ∇)v]i = vk
∂vi
∂xk

[ div gradv]i =
∂

∂xi

(
∂vl
∂xl

)
[∇2v]i = [(∇ · ∇)v]i =

∂2vi
∂xk∂xk

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A−
(A · ∇)B

B Tricks

Some reoccurring tricks used in derivations.

B.1 Partial Integration

B.2 Taking surfaces to Infinity

At infinity there are usually no deformations ui,

hence integrals like
∮
σikui dSk vanish.

B.3 Reverse Product Rule

g df
dx = dfg

dx −
dg
dxf

B.4 Geometric Identities

n ‖ z =⇒ σiz = 0

u = u(x, y),u ‖ z =⇒ divu = 0 =⇒ ∆uz = 0

B.5 Integration of cylindical Equation

Expressions like 1
r

d
dr

(
r df

dr

)
= A = const. are inte-

grates as f = 1
4Ar

2 + B log r + C, where B,C are

integration constants.

B.6 Both terms need to vanish indepen-

dently

If expressions like δa(...) + δa · b(...) = 0 need to hold

for all δa.

C Math Shit I should know, but

don’t

C.1 Spherical Coordinates

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2

∇ · v =
1

r2

∂(r2vr)

∂r
+

1

r sin θ

∂(vθ sin θ)

∂θ
+

1

r sin θ

∂vϕ
∂ϕ

∇× v =
1

r2

(
∂(vϕ sin θ)

∂θ
− ∂vθ
∂ϕ

)
er

+
1

r

(
1

sin θ

∂vr
∂ϕ
− ∂rvϕ

∂r

)
eθ

+
1

r

(
∂rvθ
∂r
− ∂vr

∂θ

)
eϕ

dl = drer + r dθeθ + r sin θ dϕeϕ

dS =r2 sin θ dθ dϕer + r sin θ dr dϕeθ + r dr dθeϕ

dV =r2 sin θ dr dθ dϕ
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C.2 Cylindrical Coordinates

∇f =
∂f

∂r
er +

1

r

∂f

∂ϕ
eϕ +

∂f

∂z
ez

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂ϕ2
+
∂2f

∂z2

∇ · v =
1

r

∂(rvr)

∂r
+

1

r

∂vϕ
∂ϕ

+
∂vz
∂z

∇× v =

(
1

r

∂vz
∂ϕ
− ∂vϕ

∂z

)
er +

(
∂vr
∂z
− ∂vz

∂r

)
eϕ

+
1

r

(
∂rvϕ
∂r
− ∂vr
∂ϕ

)
ez

dl = drer + r dϕeϕ + dzez

dS =r dϕdzer + dr dzeϕ + r dr dϕez

dV =r dr dϕdz
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