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1 Catenary, Suspension Bridge

and Elastic String

Equilibrium shapes of hanging inelastic cable, a
suspension bridge and an elastic string.

T, pg > )

uw(x) = —cosh| =z ) —1 Catenary

(@) pg < <Tx ( )
h

u(z) = PR 2 (Suspension Bridge)
2T,
h

u(z) = % 2 (Elastic String)

Derivation Catenary T'(z+dxz)—T(z) = pg dl and
suspension bridge T'(z+dx)—T(z) = pg dz. Rewrite
di. T, = const. Tension is tangential to line % =
%. Solve using v = u’. Tension T, from boundary
condition (chain length). For elastic string minimize
energy 0F = TodoL + Egravitation = TOf V1+u? —

1dz + [ pgudz. Use Taylor for first expression.

2 Elasticity Theory

2.1 Strain and Stress Tensors

Displacement vector u(r) =7 —r.

Strain tensor is the symmetric tensor

1 /0u; Ou, Ou Oy
Uik = 5 +

2 \Oxy, Ox; Ox; 0x;

2 8a:k 8.%2
Rel change of volume ch/li_‘/'W =wuy; = divu
Derivation dlI’ = (dz; + du;)? = = di? +
2u;r, do; dxy, by expanding and using du; = g;f; dxp.
Assume small displacement, then g;‘}i < 1 and

quadratic terms can be neglected. Volume dV’ =
day dahy daty = dV(1+u1)(1+ug2)(1+ugs) = dV(1+

Shear and compression The strain tensor can be
rewritten as w; = (ujx — %(mu”) + %(L-kuu. The
first part is called shear (only off-diagonal) and corre-
sponds to volume perserving deformations, the sec-
ond part is called compression (only diagonal) and
corresponds to shape perserving deformations..

Stress tensor o;

Ocrik

F; = (Stress Tensor)

oxy,

Derivation Newton’s third law: total inner force
from the inner part is zero, hence all forces arise at
the surface.

Stress and energy o, = ( oF )T _ ( U )S

Derivation Calculate work dw = F;du; = %‘;j:

5ui in
a volume integral, use partial integration B.1, taking
surface to infinity trick B.2. Calculate dU = T'ds —
dw =T ds + 04 du;j and dF = —sdT + o4y, dusg.

Moment of forces (torque)

My, = %Uill’k — o dS) (Torque)

Derivation Use M, = [(Fxi—Fyx;)dV, F; = %“Tf
reverse product rule B.3, Gauss’ theorem f g—g‘: =

$ AdS; and symmetry of oy

Constants used in subsequent equations.

o Lamé Coefficients A, p with g > 0. A > 0 holds
in practice, but not required from thermodynam-
ics.

o Compression Modulus K = X+ %,u >0

e Young Modulus E = 39[?7_&, also coefficient of
extension.
e Poisson’s Ratio 0 = %gg;gﬁ is the ratio of the

transverse compression to the longitudinal ex-
tension. Theoretically —1 < o < 1/2, experi-
mentally 0 < o < 1/2

2.2 Boundary Conditions

Hydrostatic compression w condition —pdS; =
*p(sik dSk yields BC Oik = *p(;ilc-

External force at surface with condition P;dS =
Oik dSk = O;kNk ds yields BC OikNk = B

2.3 Hooke’s Law
Equilibrium state satisfies o;, = u;r = 0.

Free Energy per unit volume

A 1
f=fo+ =(ui)? + pugug = o OikUik

2
I S o S
I =501 (“Z’”L 1—20“’”>



Derivation Alternative 1: In equilibrium o;, = 0,
hence F' quadratic in u;;. Neglect higher order terms.
Alternative 2: FEnergy must depend on gradient of
displacement, but must be rotation invariant and

hence should not contain the antisymmetric part
Oui _ Oup

Hooke’s Law

terms.

1
Oik = Aupdip + 2puiy = Kuydip, + 2p(uwi, — gdikull)
B FE N o 5
- l+o Uik 1— 2Jull ik
L k0 + (0 — ~dwou) (Hooke’s Law)
Uil = —— 0.0 —\Oj. — —0;1.0 0oKe aw
ik 0K kOl 2/1 ik 3 k01l 5
1
= E ((1 + O')Uik — U(Sikgll)

Derivation Vary F with respect to w;; and invert
expression to obtain Hook’s law.

2.4 The Equation of Equilibrium for
isotropic Bodies

Homogeneous Deformations are deformations
where the strain tensor is constant throughout the
volume of the body.

Equilibrium equation

puNV2u 4 (p+ N grad divu = —F

Alternative representations include

E 0%y E
2(1+0) Oz

82ul .
2(1+0)(1 —20) Oz;01;
1
— grad divu = —pg JEFJU
1+o0
E

—PYi

Au +

2—20
1—-20

grad divu — rot rotu = —pg

Derivation The equilibrium condition states 0 =
ZF = %;’: + Fi,eact-
terms.

Use Fepy = pg; and rewrite

2.5 Thermal Expansion

Free energy under thermal expansion F(T) =
Fo(T) — Ka(T — To)uii + %Ku?l + ,U«(uik — %5ikuii)2

Stress under thermal expansion o, = —Ko(T—
To) ik, + Kuudir, + 2(uik — $6iun)

Derivation For T' = T body undeformed, T # Tj
body will be deformed even without external forces,
hence F becomes linear in A(T")u;;. Taylor A around
Ty and keep only linear term.

Volume change from heating §V/V = u; =
a(T — Tp) when there are no external forces. « is

the thermal expansion coefficient.
Derivation For o;; = 0 we get u;p X k.

Equation of equilibrium for non-uniformly heated
isotropic bodies

— 20

2(17_0_> rot rotu = OéVT

grad divu —

2.6 Elasticity of Crystals

Elastic modulus tensor is the tensor ;i S.t.

F = iAiklmUik’U«kl

and hence ;5 = AjgimUi, holds. In general for

isotropic bodies it is given by

Nikim = NOiOim + 1(0i10km + Oim ki),
(Elastic Modulus)

and has 21 independent components.

Derivation 6 independent combinations of {z,y, z}.
First pair can be combined with 6 other pairs, second
with 5 other pairs etc. 21 =6+5+4+3+2+ 1.

Monoclinic has 13 independent components.

Orthorombic has 9 independent components.

Tetragonal System has 6 independent compo-
nents because of mirror and rotation symmetry.
It consists of a cube with two sides of the same
length.

Hexagonal has 5 independent components.

Cubic System has 3 independent components. It
consists of a cube with three sides of the same

length.

Thermal expansion wu;, = %aik(T — Ty) where
oy 18 a symmetric tensor with varying number of
components: 3 (triclinic, monoclinic, orthorombic),

2 (tetragonal), 1 (cubic).



Elastic energy of classical harmonic lattice
OF; N C C
int = 1g > [CikR;Ri + CjrRiR,
+ CileRk + CﬂRiRk]uijukl

1
Nkl = — i (R
Jkl Vo ch(
+ Cil(R)Rij + le(R)RiRk

)Rle + Cjk(R)RZ‘Rl

Derivation Start with E;,; = %ZR,R’ V(R +
u(R) — (R + u(R/))), Taylor, linear term vanishes,

use Cjj = %. Expand u;(R) = w;(R') +

Sui (R — R'); and shift R — R' — R. Replace
J

g}% by wi; (energy does not change under rotation).

Add combinations by exchanging i < j, k < [,

pull wu;jup; out of the bracket and compare with
(5Eel = %f)‘ljkluljukl dV to obtain )‘z]k:l V =NV,

where Vj is the unit cell volume.

2.7 Bending of Rods

Assumptions Displacements are small, rod is thin,
forces at surface to bend rod are small and can be
neglected, rod parallel to x-axis.

Boundary conditions ojn, = 0 = 0..n, + 0.yny
for rod along x-axis (i.e. ngy = 0).

Components of 0, are all zero except for o,

Derivation For some point on the circumference of
the cross section n, = 0 and then BC = 0 =
0.:n, = 0, = 0. Similarly for o,, = 0. Rod is
thin, hence o, = oy, = 0 everywhere.

Neutral surface passes through center of mass.

Derivation Internal stress force on a cross-section
[ 05:dS = [ 2dS = 0, which is the z coordinate of
the center of mass.

Deformation for bent rod is

ozy

uzz—i(m +0(22 —y?),u Uy =~

2R

, Uy =

Derivation Length of neutral surface de = Rdy,
length away from neutral surface dz + du, = (R +
2)dp = Upp = F, Uyy = Uzz = OUgg, Oz = B,
Integrate to get u,,uy, from that construct u, such
that uz. = ugzy = uy, = 0.

Equation of equilibrium for a bent rod is

F, =I1Ez". (Eq of equilibrium)

Its energy is F = [ $I1E(2")? + U(z,z) du, its torque
. — EL
¥y~ R

Derivation Free energy: f = %Jikuik = %Jmum.
Use [22dS = I,. Torque My, = [ 04,2dS. Rewrite
F using 1/R = i%. Add potential U(z,z). Vary
with respect to z to obtain equation of equilibrium.
Opt: For bends in z and y direction add deriv to F'.

2.8 Applications: Examples of Deforma-

tions
2.8.1 Rod bent by its own Weight

Boundary conditions for bent rod

e clamped z =0, 2/ =0

e supported z =0, 2’ = 0 (torque is zero)

Equation for a rod either clamped on one side or
supported on both sides

P 2, 12
2= grprt (x—L) (clamped, 2 sides)
_Pg . 3
= oor (x> —2Lxz" 4+ L°) (supported, 2 sides)
_f :
2= gt (3L — x) (clamped, 1 side)

Derivation Use Ansatz z = 5975 (2 +Cra23+Con? +
Csz + C4). Boundary conditions: clamped on 2 sides
2(0) = z(L) = 2/(0) = Z/(L) = 0, supported on 2
sides z(0) = 2(L) = 2”(0) = 2”"(L) = 0. For clamped
on 1 side use EIzY = —fj(x — L), 203 = %
where f is the force acting on the end, and BC z(0) =
2'(0) =2"(L) = 0.

2.8.2 The Energy of a Deformed Rod

Coordinate system &,7,(, where ( is parallel to
axis of rod.

Relative rotations are described by the vector de.
Deformation is determined by %—“l"

Energy can be written as

depe 1 de, \?
F= /IE<dl> 212E<dl

1 de¢ 2
+§C (dl) dl



where the first two terms correspond to the previ-
ously derived elastic energy and the third term cor-
responds to the energy stored in twisting/torsion.

Derivation To obtain the bending elastic energy use

— 7 —dr dr dr . (d%z d%y
<90£’9017) =T =q "~ a then dar = (dz2’ dx2)'
Torsion for cylinder has deformations u,, =

y d d
—4F, uy. = §5°. Energy and torque needed to

twist the top an angle ¢ (C' is the torsional rigidity)

77
= ZuRY
(& £) ds 0= unt
7w pupoR?
M=C—F— .
dz 2 1
Derivation Torsion by angle ¢ has u, = —yp(2),

uy = xp(z), dive = 0. This gives ug.,uy.,

other u;; = 0. Stress o; = 2pug,, then F =

[t dzd?r = ... = Ljfﬂf% (%)de. For torque,
add energy due to external force V' and vary F with
respect to . Use §V = —MJdp and integration
by parts for integral. d¢ is arbitrary, integral and

bracket need to vanish independently.

2.8.3 Deformation of an elastic Medium
when a Point Force is applied

Equation to solve VZ?u + ﬁgrad divu =
—2122 Fg(r).
Deformation in 1D and 3D

~ 1+0 (@B—-40)F+n(n-F)
- 87E(1—o0) r (3D)
F
u = 20]2] (1D)

Derivation In 3D: Solve by switching to Fourier
k(k-u) = QHT"F. Multiply by k,
and insert back to original Fourier

space k’u +

1—120
extract k-u = ...
equation to obtain expression for u(k) o< F/k? —k(k-
F)/k*. Transform back using 1/k* — .=, k(k-F) —
—V(F - V)f(r), k(k - F)/k* — FV(F - V)r =
817r 717 nnF) ith n = r/r.

In 1D: Vary F={ (3—2)2 + F(z)udz to obtain u =
a|z|. Integrate this solution as C4%|*0 + —0 = F to

get .

2.8.4 Point Force applied to Surface

Equation to solve uVZ?u + (u + M) grad dive = 0
in cylindrical coordinates with BC o,.(z = 0) =

0p:(z =0) =0,0,, — P&*(r).

2
uz:—i 2“+/\+“+/\i
2R 1 u R?

2u+ Az + 223
2w LK )

z
022 = 3a(p + )‘)ﬁ

o 2z 28
”w—rz<1‘3+33>

Neutral angle for u,: sinf8 = 5 = \/ﬁ — %

Neutral angle for oy, sin 8’ = ‘/‘?’2*1 ~ 38.2°

Derivation Take div of equation to get V2 divu =

0. Use Ansatz divu = _O‘f?z}l:: = azz and u, =
2 .
“Mj% with R = /72 + 22 to solve initial equa-

tion in z component for u, by using 1/R = V2R/2

to eliminate V2 Add harmonic function to get
BN 22

v = - b L () + B

solve for w,: gr(rur) =7 (divu — %). Use ru, =0

at r =0 as BC. BC at z = 0 states o,, = 2uu,, = 0.

Use divu = to

Use R~r (1 + %) to obtain v = —a%. Calcu-
late [o.. d?r = fﬁdzr = %’T and hence at

surface 0..(z = 0) = —P&%(r) we get o = *m‘

For the neutral angle solve u,/ o, for z/R = sin .

Interaction energy of two balls displacing the
surface Uy = F(up + ug) = —f]3j§2(r —

. _ ___P? 2u+) 1
Tz)ulj ds = Pulz(rg) = o7 u(ptN) Jri—ra)

Derivation Define v = wu; + wus. Compute
A divu)? + p (8”1 + 8“’“>2 for wy,us.  Extract
F(u1), F(u2), keep mixed terms and use partial in-
tegration on their integral such that one volume in-
tegral and two surface integral remain [(—=X-...— -
cug; AV A+ (A4 oo — Pjo3(r — 11))ug; dS —
J P;6*(r — ro)uq; dS. The first integral vanishes be-
cause it is the equation equilibrium in the bulk, the

second integral vanished because it is the boundary
conditions at the surface.

3 Elastic Waves

3.1 Wave Equation
)2 dx

U2 u
Se) e+ [ 5 (5

E = EBa+ Epin= [ 5 (§



Pu 2

ot?
and general solution u = f(

= 0 with ¢ =
ct) + g(x + ct).

Wave equation ‘327”“2” T/p
x —_—

Derivation Vary total energy or use Newton’s sec-
ond law F' = ma.

3.2 Elastic Waves in isotropic medium
Eq of motion pii = uV2u + (1 + A) grad divu

Longitudinal waves satisfy rotu; = 0, pu; =

(21 + A\)V2u; and cl:1/@~,/%.

Transverse waves satisfy divu; = 0, piiy = pV>uy

and ¢; = %.

Derivation Use uw = wu; + u;. For longitudi-

nal V2u; = grad divu; — rot rotw; = grad div .
Speed of wave can be obtained by comparing coeffi-

cients.

Monochromatic plane waves u =
R (Akei(k""_“’t)) have for longitudinal waves Ay, || k,
dispersion w; = ¢k while for transverse waves

Ay, L k, dispersion wy = cik.

Polarization for transverse waves u = A coswt +
Ajssinwt. Linear polarization for Ap || Asg, circular
polarization A; L As, |A1]| = |As|.

3.3 Elastic Waves in Crystals

. s 82u2- _ 8Uik _ 3 82’um
Equation of motion p 2 = Orr )‘%klmiaxkazl
Dispersion relation for Ansatz wu(r,t) =

Aetkr=wt) vields condition \ixmkirk; = P8

Derivation Use pa;gi = %‘;i: with ;1 = NikimUim.-
Pluck Ansatz into equation to obtain dispersion re-
lation.

Example: cubic crystal with Agze.

Clla)wwyy = Cl%)\my:ry = Mpzzz = Caq. For k =

(k,0,0) we get w? = %kz, w? = %k?

3.4 Reflection at free Surface

Reflection mixes waves Purely longitudinal or

transverse waves are mixed at reflection. It must

hold that w = w’ due to continuity, kj = klll due

to y-symmetry, hence ksinf = ksin€’. Since k =

sinf _ ¢ __ n
sin 6/ c :

w / w
2.k =% we get

Reflection for waves of the form u = Agnge*o™ +

Ay 4 Ay(2 x ny)e®rT we get with n = o

sin? 6, sin 20y — n2 cos? 26,
Osin 26, sin 26y + n2 cos? 26,
2n sin 260 cos 20,
Ogin 20, sin 20 + n? cos? 260,

A=

A =-A

Derivation Note that ng, = n;,; = costhp, noy =
—nyy = sinfy and 2 x n; = (sinby, cos ;). Use the
Ansatz to derive gy, uzy (note how wuy; would look
like). From BC 04, = 0y, = 0 and Hooke’s law o3, =
2pc2ugy, + p(cl2 — 2¢))uydi,. Equations for Ag, Ay, A
For 8y =0, A; = —Ap, A; = 0, longitudinal reflected

wave.

3.5 Surface Waves

Ansatz u oc e!FP=w)X2 with y = /k2 — "2—22 and

boundary condition o;pn; = 0.

Dispersion relation for reflected surface waves
w = ¢k& with €& < 1 the solution of (1 — %52)4 =
(1-¢&3)(1 - %52) that is within the range csurface =
aé < ¢ < .

Derivation Pluck Ansatz into equation to obtain
Then u;; = 0 and

0(Uge + Uyy) + (1 — 0)u,, = 0. Because of this and
Ousw y Ouse

the Ansatz u, = 0. Wave parts satisfy “gt= 4 5= =

aulm _ 6“12 —
0, 0z or 0.

a, b for transverse/longitudinal respectively) to derive

X- 0iz = 0, because n || z.

Use Ansatz (with constants

Uty s Utz Uz, Ulz-

e BCI1: 0 =0y, X Uy, = 85? + %7;;. Substitute in

Uj/1 /> 1O obtain a(x? + k?) + 2bky; = 0.

e BC2: 0 = 0,, = c%%“; + (cl2 —20?) 88“;. Use

o Oute 2_ 2 (12 .2
U =u+uy, GE+ G =0,w :Cal(k _Xt,l)

to obtain 2ax:k + b(k* + x?) = 0.

BC1,2 compatible if (k2 + x?)? = 4k*y;x:. Use
Xl2,t = k% - wQ/Cit to get (2k% — w?/c?)* = 16k*(k? —
w?/c})(k* — w?/c?). Note that w o k, hence Ansatz
w = ¢k Pluck in and solve cubic equation in
r = &2

Csurface = th < ¢ <.

It follows the dispersion relation and



4 Dislocations

4.1 Stress Estimation

_ M e £
o =g sin 274 % oives maximal stress opar = 5=~ 15"

However, due to dislocations in reality o ~ 10™%.

Derivation Consider periodic crystal with distance
a. For small u strain is 7, stress . Assume periodic
function o o< sin <& 2”“ , because upon displacement of

~ a the lattice retalns original form. For u < a

£ sin —2““

9 Maximal stress oy =

o ~ pg hence o =

oM
27 ™ 10°

4.2 Definitions & Displacement Field

Along dislocation, w is a multivalued function,
derivative, however, are single-valued. The figure
shows one screw dislocation (a), and two edge dis-
locations (b,c).

Distortion tensor w;; = %’;, Uil = %(wzk + wg;)-

Ju; _
D dz, =

— fL w;g drg. It is independent of path. Dislocations

Burger’s vector b; = —fdu; = — §

cannot end inside the sample.

Tau 7 is the tangent vector at the given point of the
dislocation. It is along the direction of elongation of
the dislocation. The dislocation line is a curve along
which the angle between b, T is changing.

Screw dislocations b || T
Edge dislocations b L T
Equation of equilibrium containing dislocations

Owy; n 1 Owy ~ Ir x
&ck 1—20 8:1:Z N

1 _1 . grad divu = [T x b]6?(€)

bli6°(€)

Au +

Derivation —by = §; wixdz; =[5, eim g2t dS;.

Because e, antisymmetric, 83;;’“

symmetric,

QW

Cilm gz = 0 everywhere apart from the crossing
point of dislocation line with surface S; =—
eilmag’;;’“ = —1;bpd%(€) or a(;”T"k’“ - 88“’7’;’“ = —[r x
b],,0%(£). Rewrite equation of equilibrium with w;y
and insert.

4.3 Screw Dislocation

Deformation u, = %gp

Derivation u(z,y) || z = divu=0 = Au, =

0 = uZ:%¢.

Energy of screw dislocation E = ‘i—f log %, where
R is either the system size or the size of the disloca-

tion.

Derivation u., = ﬁ 02p = 2/, and other com-

ponents zero. E = %f o, d2r.

4.4 Edge Dislocation

Deformation wu, 2b (arctan + 2(1 ) x2+y )

Uy = — (2%122 log \/z? + y? +21 —7) 2+y)
Stress oy, :2 —bB%, Oyy bBZ(’(ng;y))
Opy = pBEE =) 2+yy )

Energy of edge dislocations E = Wlog '
and F = 1b fOR ozy(p = 0) dz.

Derivation Equation to solve V2u + 1EQUV divu =
be,62(r). Look for solution of the form u = ug + w

with ug, = %g@,uo,y = %logr taking care of the
multivaluedness. Since divug = 0, Aug = bey(52(r),
w is single-valued and satisfies same equation to

solve. Solve by switching to Fourier space with solu-

3—4o _ 2 12
tlonw—47r(1 57 ) FRTey T g dd, R=Vr? + 27
Derive ug, uy from u = ug —i— w. Derlve Ouzy Oyys Oy-
. Mb2
Energy is B = ;47— f

Cut Surface Sp Define u as continuous function on

plane with cut surface Sp sucht that u, —u_|g, = b.
R

Then F = 3 [ o55u; d*r = b [7 04y (0 = 0) da.

4.5 Dislocation Motion

Sp-surface is the surface where displacement jumps
Uy —u— | SD = b.

Change of volume §V = bdS = dx - [T x b]dl. Le.
screw dislocations never change the volume.



Glide motion is parallel to 7,b, does not change
the volume V' = 0 and hence is easy motion.

Climb motion does change the volume 6V # 0 and
hence is hard to achieve. For it to happen, atoms

have to diffuse.

4.6 Forces acting of Dislocations

Plastic deformation on moving dislocation by dr
5ul(.il) = % (b;[6r X T] + bp[or x 7)) 2(r — 1g).
Derivation On surface Sp: w4 —u_ = b, thus w;y
has singularity there w,f,f) = n;br0(&), where n is nor-
mal to surface € || n. Dislocation motion is changing
Sp, then by moving dislocation by dr we obtain the
above equation for plastic deformation.

Peach Kohler force f; = e;pm.01mbm

Derivation Work due to external sources éR =
f ae"’”téuzk dv = § Ue ezlmérl'rmbk dl = f fiérl dl by

substituting 5u§kl). Force by comparing coefficients.

Interaction of two dislocations has the forces
2 2 2 2

fo = bibyBEEZ) o — b, BYET) - Aligned

along the same direction b1bs > 0, there is an unsta-

ble eq point at x = y. Aligned the opposite direction
b1bs < 0, the opposite case holds.

Derivation Use coordinate system such that 7, =
—1, b, = b and pluck into Peach Ko&hler force. Use
expressions for o;; from before. Point is in equilib-
rium in x-direction for 22 = y? (unstable) and z = 0
(stable). However, |f,| always increases.

4.7 Peierls-Nabarro Force

27"Hb 2rx ,— 2”';’0‘

Peierls-Nabarro force F = sin =3Fe

Critical stress o4, = pe™"

Start

Rewrite

Derivation a:n = mb + g
i 2 Y
with £ = 4 2(1 a)b Zn,mm
_ 2 _0 1
£ = _47r2(1—cr) Xom Ymayz, Enm

late last sum using Poisson formula )", W =
m

nb7 Ym =

Calcu-

2ﬂkx

M Keep only

iy S exp (1252 exp (-
largest terms Wlth k = +1 and smallest y,, to ob-
tain F ~ ﬂcos 2L exp (—%). Use yo = b/2 for

dE

Omaz- Calculate force F' = .

5 Hydrodynamics: Basic Equa-

tions

We need three quantities, the fluid velocity v(r,t)
and two thermodynamic quantities, e.g. the pressure
p(r,t) and the density p(r,t).

5.1 Continuity Equation

Continuity

0
f + divpv =0 (Continuity)

0

Derivation Change of mass % [ pdV is the flow out
of the surface — § pv - dS. Then Gauss’ theorem.

5.2 Euler’s Equation

Ideal Fluid A fluid without viscosity and thermal
conductivity is called ideal.

Euler’s equation

ov o Vp )
5 + (v-V)v P +f (Euler’s)
0 Ol

Assumptions We neglect energy dissipation, inter-
nal friction (viscosity) and heat exchange.

Derivation F = — §pdS = [p%dV and § =

%—F(U-V)v

5.3 Hydrostatics & Convection

Hydrostatic equations « ~ 6.5°/km

p=p(0) — pgz
p =p(0) exp (—%) (Boltzmann’s law)
T
mg/a
p =p(0) exp (1 - O}j)

Derivation Fluid at rest: gradp = pg (Euler’s

equation). For first equation (incompressible fluid)
direct integration, for second use ideal gas law p =
B2, for third use linear temperature decay T'(z) =

To — Qz.



Why wind blows and current flows p, p deter-
% = pgp pand T

mine temperature. Because 55
should be functions of altitude z only.

Convection

AT 9T 10K km™ !
Cp

dz

Assumptions Substance expands on heating, shift
is adiabatic.

Derivation Adiabatically up-shifted fluid element
needs to be forced back down, i.e. must be heavier
than displaced fluid V' (S(z — dz), z)|, < V(S(2), )|,
or (35),% > 0. Then 0 < ¢ = (57), &

dz dz T ) p dz
95 dp _ ¢ dT v g 1 odp
(‘910) &z = Td: T (8T)p Vo where V = —
08 _

p? dz
—p9, 7 = F- because (5g), = o (5r),

5.4 Bernoulli’s Equations

de _ dy _ dz
t'v

Streamlines are lines such tha = =y
Yy z

Bernoulli’s Along streamlines it holds that

1
H+ 5112 = const. (Bernoulli’s)
L
pgz +p+ —pv° = const.

2

Assumptions Isentropic motion, steady flow.

Derivation Define enthalpy per unit mass H =

U + pV. For isentropic motion (dS = 0) it holds

that dH = Vdp = dp/p and Euler’s eq becomes
%1’ + (v - V)v = —VH. Be rewriting non-linear term

%1; +vx (Vxv)=-V(H+ 3v?%). Use steady flow.
Multiplying with unit vector along streamlines I ren-
ders the left side 0, hence %(H + 1v?) =0.

V2gh

Torricelli law |v| =

Assumptions v(0)
ible liquid.

=0, p(0) = p(—h), uncompress-

Derivation Use gz + % + 2v?% = const. (Bernoulli)
at z = —h and z = 0 with v(0) = 0.

5.5 Energy and Momentum Flux

Energy Flux Density

0 1 1
g (pE—l— —pv ) = pv <h—|—2'v2>
(Energy Flux Density)

Derivation We need to compute % (pE + %pvQ).

° % (%pv 2): Use continuity and Euler’s equations
and v - (v-V)v = v - VT”Q. Rewrite dh =
Tds+ Vdpto Vp = pVh — pT'Vs. Final result
0 (1, .2y _ w2 di _ .V (h 1,,2
5 (3pv?) = =% div(pv) —pv - V (h + 3v7) +
pT(v-V)s.

o %E. Use dE = Tds — pdV = Tds+%’),
rewrite d(pE) = Edp + pdE = hdp + pT ds,

O(pE 0

then (gt) hgf + pT
98 _ ds
ot . di
Final result

Use continuity eq,
(v - V)S and adiabaticity 48 = 0.
a(pE) —H div (pv) — pT'(v - V)S.
Combine E (pE+ Fpv?) = —div(pv(H + Jv?)).
Obtain flux from comparing coefficient in
2 [(3pv2 +pE)dV = — § p(H + 3v2)v - dS.

Momentum Flux Density Tensor

IT;, = pdix + pv;vg (Momentum Flux)

Derivation Use continuity and FEulers to calculate

o(pvi) _ 8vz _ Qv _ Op _ Olpuk) _
el = p%i + Su; = —puy kdzy — 0z, — Vi dm,
_ Op _ a(pvzvk)
95, — —on, - Obtain Ily from comparing to
pvi) My
ot oz, *

5.6 Circulation

Vorticity is defined as €2 = rotwv.

Velocity circulation around a contour C is defined

Fz%v-dl.
C

Law of conservation of circulation for a small
fluid surface 6.5 it holds that 6S - rot v = const. or

dr
dt

as

=0, }{'v -dl = const.  (Kelvin’s Theorem)

Derivation % $ov-dl = §, %’ dl+$v- dd(};l. Use
dl! = ro + v(ry)dt — r1 —v(ry)dt = dl + de(dl -



V)v why? , and v - (dl - V)v = dl - Y2* and & =
—grad H (Euler’s) to render both parts zero (closed
contour integral over gradient vanishes). For other
representation fvdl = [rotv-dS = dS - rotv =
const.

Distance and vorticity equations

dr

dr _ dQ
dt

— =(Q-V)v

r-V)v, T

Derivation Position: from geometric considerations
of previous derivation with dl. Vorticity: start by
Euler’s as in the derivation of Bernoulli’s equation
%‘t’ —vx (Vxwv)=-V(H+3v?), take rot to obtain
%—? = rot (v x Q). Use V x (A x B) = ... rule to
get rot (v x ) = (@ x V)v — (v - V)Q and hence
(Q@xV)v=2%t+ (v V)2 =92

Vortex lines

Qxr

rotv =Q =const. = v = 5

Qo X
rotv = Qod%(r), dive =0 — v = 0= T
272

We use a cutoff (vortex core radius) at distance a.

6 Potential Flow

6.1 Incompressible and irrotational Flows

Pressure and density Ap = %, c= <%>S~

Derivation For longitudinal waves ¢ = +/K/p.

E = LVK(divu)? = %VK(JVV)Q with compres-

sion modulus K. From thermodynamics K =
2E\ _ (5} _ o)

v (W)s =V (ai‘e)s =7 (3%)5'

Incompressibility means p = const. or divv = 0.

It is fulfilled if v ~ L < ¢, where [ is the typical

length scale of velocity change for time scale 7.

Derivation Continuity eq for constant density be-
comes divv = 0. Bernoulli Ap ~ pv?2, thus Ap =
YN pZ—s, thus dp/p < 1 iff v < ¢. In nonsteady

=
0 ) 0 vl . v -
flow 57 ~ °F ~ 5 ~ L% < pdive ~ B iff I/c < 7.

Potential flow or irrotational flow for rotv = 0.
Define the velocity potential v = gradp. Euler’s

equation becomes (if ¢’ absorbs the constant of inte-

gration)

dp 1 5 0" 1 5
0= d{—++2 H|=—+- H.
gra <8t + 5 + > ot + 5 +

Small oscillations can often be described by an
irrotational flow, i.e. rotv = 0.

Derivation Nonlinear term can be neglected, Eu-

ler’s eq % = —VH. Take rot to see %—? =

rot v = const., but since avg is zero rotwv = 0.

0, so

Bernoulli’s equation for steady potential flows be-
comes H + %02 = const. everywhere.

Derivation Use Euler’s eq in potential flow 0 =
grad (%—f + %vz + H) and steady flow %—f = const.

Incompressible potential Flow solves this equiv-
alent system of equations

dive =0, rotv =0, BC wv,=0,
Vip =0, e 22 o
on

Solutions for an arbitrary shape has in general
A; = a;ruy, where oy, depends on the body shape.

Derivation Solve by electrostatic analogy. Solu-

tions of Laplace’s eq that vanish at infinity are 1/r,
%(%). Symmetry requires that ¢ o« u.

o= Alu-V(}) = —Aup.

Hence

Solutions for a sphere At the surface of a sphere
with A = P,

R3
w=—@(u-n)

3
v:ﬁ(Bn(u-n)—u)
p:po—p—u2(900320—5)+pRn-u

Derivation At surface of sphere v-n = w-n. Multi-

plying the general v from above by n yields A = R;.
. o]

Incompressible H = p/p, then p = py — %pv2 — pa—f.

10



Solution moves with sphere ¢ = ¢(r — ut, u), calcu-
Op _

ot
above to get p(r = R).

late

—ugrad ¢ + g—;‘: - . Use this and v from

Energy and Force for a body of arbitrary shape in
a potential flow, A; = a;pug,

1
E = oMkt (Energy)
mi = p(dmar — Vooik) (Mass tensor)
d dP,
F; = _a(mikuk) . dtz

1

5p [v2dV for a
sphere containing the body. Rewrite v2. Use incom-
ressibility, w = const., div(fa) = Agrad f + f diva,
Gauss’ theorem, the explicit solutions for ¢ and v

Derivation (Conceptually) E

from above, infinitely large sphere to kill one integral
and integral averaging. Force by dEf = —F - udt,
comparing to F.

6.2 The Force acting on a Body in Poten-
tial Flow

Forces parallel to u are called drag forces, perpen-
dicular to u are called lift foces.

d’Alembert’s Paradox Using previous results, in a

. . . dp _
potential flow with constant velocity u we get 3 = 0,
hence all forces vanish.

Derivation Alternative 1: In potential with con-
stant velocity u we get F' = %—1; =0.

Alternative 2: F; % = % (fpvi dV)
$ i dSy = — [o(Pdir + pvivy) dSy, = 0. First term

vanishes, because pressure is constant along all direc-

tions, second term in the infinite surface limit.
Alternative 3: For F assume @ = 0, then under time
reversal pressure must not change (symmetry from
Eulers eq). This must equal the situation for a space
inverse symmetry, where flow direction and pressure
invert. Hence F' = § pdS = 0.

Equation of motion for u in pot flow as reaction
to an external force f

d

dt(M(Sik + mp)up = fi.

Eq of motion for v in pot flow when the body
moves with velocity u

(Mg, + mar)up = (Mg, + pVodi ).

11

Derivation If the body moved as fast as the fluid
dMu; __

a =
consider additionally the reaction force %(m)ik(vk -

u = v, then

pVov;. 1If the velocities differ,

ug)). Integrate equation and set constant to zero.

6.3 Two-dimensional Flow

Definition (Stream function V) defined as

ow
oz’

_ov
o

U, vy =

Stream lines dV = v, dy —v,dz =0

Flux through lines [’ v, dl = U(b) — ¥(a)

6.4 Potential Flow in 2D

2D Potential Flow satisfies the Cauchy-Riemann
= 39y = oy Yy T Bz T

and states that the following expression must

conditions for ¢ and ¥ v

_ov
ox

be analytic

dWw ,
W=¢+i¥ with — =0ve ¥,
dz
Stagnation point has v = 0.
Uniform flow W = (v, —ivy)z
Pot flow near stagnation point W = %kz2

Derivation Because at stagnation point v = 0, Tay-
lor expand ¢ = Sij%, then dive = S;; = 0. In
principal axes ¢ = %(3:2 —4?). Then v, = kx,v, =

—ky and ¥ = kxy. Together W = %’2 (hyperbolae).

Conformal Transformations Velocities of the
form W = Az", z = re” have bounaries at § = 0
and 0 =

™

.
Derivation ¢ = Ar"cosnfl, ¥ = Ar"sinnf. Zero

flux coincides with streamlines, so § = 0,7/n could
be seen as boundaries.

Velocity modulus v |92 | n|Alr"~! either

turns to 0 (n > 1) or to infinity (n < 1).



7 Viscosity

7.1 Viscosity, Navier-Stokes Equation

Viscous stress tensor agk describes internal fric-
tion and is given by

81)1- 8’Uk 8’01

A — 7t /8., ¢

O =1 (39% + 81:1-) +7751k8xl-
_ Qv 9o 20u v
=7 <a$k 89:,- B 3 (91'1) + C(Slk 8%[

where in the second representation the first part is
traceless.

Derivation Internal friction occurs when the fluids
moves with different velocities (=gradient). We as-
sume small gradients and hence a linear dependence.
Rotational velocities should not result in internal fric-
tion, thus o, should depend only on symmetric com-
binations of spatial derivatives.

Viscosity are the coefficients n, n’. ( is called the
second viscosity.

Kinematic viscosity is the ratio v = n/p.

Navier-Stokes
v
—+

p (3 (U-V)v>

ot
(Navier-Stokes)

Boundary condition Navier-Stokes requires two
boundary conditions. We set v = 0.

Derivation Use Euler’s equation in the moment flux
form, add viscosity term and collect terms.

7.2 Energy Dissipation in an incompress-

ible Fluid

Energy dissipation in an incompressible fluid

dEy; 1 v, v \”
kin S / 7 k dv
dt 2 8.%'k 8.%'1
Derivation % (pv?) = pv - %, substitute %;’
from NSE, writing viscous part as v; 8‘;‘:. Use re-

verse product rule trick and divev = 0 to rewrite all
but one terms into — div (pv(v?2/2 + p/p) — v - o).
Integrate over volume, use Gauss’ theorem and use

taking volume to infinity trick to kill surface inte-

/ 61}1‘
gral. For —faik oz

and combine with o/, . It follows that 1 > 0.

symmetrize velocity derivative

—Vp+nV2v+(n+1) grad dive

7.3 Applications
7.3.1 Viscous Flow in a Pipe
Hagen-Poiseulle

WAPR4

@= 8nl

(Hagen-Poiseulle)

Derivation Solve Navier-Stokes for a pipe along
Use v

x-axis in cylindrical coordinates. =

(vg(x,y),0,0). y, z component gives p = p(x), x com-
dp dp

dz dz
v in cylindrical coordinates, log part vanishes, to ob-

tain v = fTﬁ(Rz —r?). Calculate flux Q = p [vd?r
using solution.

~
~

ponent gives = const., hence %. Integrate

7.3.2 Couette Flow: Flow between rotating
Cylinders

Couette Flow between cylinders rotating with ve-
locity € (inner) and Q9 (outer). Velocity field v and
moment of frictional forces M 2.

R} QR (- Q)RIRY]

R R R-R
_ 2 P2
2 v

Derivation Coordinate system v, = v, = 0, v, =

de d%e
v(r), p=p(r). It holds that 72 = —er, ¥ = e
and (v-V)v = —%e,. Radial part NSE ¥ =
pv? 1dv v

Ansatz of the form r” leads to v = ar + g. Use BC
v(Ry/2) = Q2R /2 to solve for a,b. Frictional force

2
r o angula‘r part 0= T]VQ'U =n ((317'5 + r dr r2

0
fi = —ojng. Use [o), ],=p, = n (4L _%]rle =
(Q1—Q2) R2 . .
—2n—5—5-2. Total moment is found by multiply-

RZ—R?
ing with 27 R;.

7.3.3 River Flow

River Flow

p(2) = po + pg(h — z) cosa

o(z) = pgsin o

o z(2h — 2)

Derivation Coordinate system (v - V)v =0, v, =
v(2), vy, = v, = 0, p = p(2). NSE for x axis

12



Y+ pgsina = 0 BC
=0,

+pgcosa = 0, z axis 77
at bottom v(0) = 0, BC at tOp 0z2(h) = 77&
Ozz = _p(h) = —DPo

Reality check For water v = ; ~ 1072 cm?s7 1.

For a rain paddle with h = 1 mm we get v ~ 5 cm s—h
For a slow river with A = 10m, a ~ 0.1 =

1000
10~* we get v(h) ~ 100kms~!, which is unrealistic.

Stability check Non-linear term and hence
Reynolds number vanish. How much perturbation
is needed to make Re ~ 1?7 Re(f5) ~ ah? 5,
90° — 5 denotes the angle between v and Vwv. For
the rain paddle Re(8) ~ 1008, for the river Re(f3) ~

10'23. The river is unstable with respect to this sym-

metry.

Derivation Use small angle approximation to get

Re(8) = “67

7.4 The Law of Similarity:
Number

Reynolds

Reynolds Number is the only dimensionless com-
bination of the three parameters that determine v,

Re = —.

(Reynolds Number)
n

Then v(r) = f(7,Re)u

Physical meaning is that of dominance of different
terms in the Navier-Stokes equation. It holds that

Re large = nV%v < p(v - V).

Similar flows are flows that can be obtained from
one another by rescaling v and 7.

8 Laminar Flows

Laminar flows are flows where the layers of particle
movements do not mix. It is characterized by a small
Reynolds number.

8.1 Velocity and Pressure of laminar
Flows

Velocity and pressure for flows with small
Reynolds number.
3Ru+n(u-n) Riu-—3n(u-n)

VST T s T

r
3 u-n
2

Derivation Steady NSE with low Re is nV?v = Vp.
Reference frame of the sphere s.t. v = u + v’ with
v/ — 0 at infinity. dive =0 = dive/ =0 =
v’ = rot A. A must be axial and linear in u, hence

= f'(r)n x w with f'(r)n = grad f(r). Then
v/ = rot A = V x [Vf(r) x u] = rot rot (f(r)u).
Then rotv = ... = —(V2V) x u. Take rot of NSE
to get 0 = V2rotv = A2V f x u. Cannot always be
parallel to u so 0 = A?f = T—QE( Af) Then
Af = 27‘1 +cand f=ar+2 7. Take rot twice to get
v = u + rot rot (fu). Obtain a b from BC u(r =
R) = 0. Finally f = 3? + 4R Obtain pressure
from gradp = nV?v = nA(grad div (fu) — uAf) =
grad [nA div (fu)].

8.2 Stokes Formula for the Drag

Stokes Formula

F, = 6mnuR (Stokes Formula)

Derivation Alternative 1: Drop non-linear term.
Viscous force can then only depend on 7, L,v. Use
dimensional estimate to get F' ~ vpvL = nuL.

Alternative 2: On solid surface v = 0 and F; =

—ogng = pn; — oyng. Then Fp = §( pcos@+

o)., cosf— are sinf)dsS. Use p(R) = 32% cosf, ol
2778“ =0,00y=— %‘ sin # to obtain F, 3"“ de

8.3 The Layer around a moving Body

Summary of the three regions.

e Qutside the boundary layer: Onseen equation,
non-linear term cannot be neglected anymore,
corrected Stokes formula, roughly potential flow

o Within boundary layer, outside wake: non-linear

term can be neglected

13



e Inside the wake: laminar, viscosity important,
vorticity, diffusion-like NSE

8.3.1 Inside the Boundary Layer

Boundary Layer is the boundary outside of which
the non-linear term cannot be neglected anymore
even for flows with low Reynold’s number. Its bound-
ary width is given by

v
r< —. (Boundary Layer)
u

Derivation Estimate (v - V)v ~ (u - V)v ~ w'R

r2
and vV2v ~ Z%R and compare (v - V)v < vV?v.

Alternative Re € 1 +<— %<<1 PN r<<%~5,

u

8.3.2 Outside the Boundary Layer

Onseen equation for flows with low Reynolds num-
ber outside of the boundary layer

(u-V)v= _V;? +vV%u (Onseen)

Derivation Approximate non-linear term.

Correction to Stokes formula for a sphere and
for a cylinder moving perpendicular to its axis

3uRp
8n

3
F =6mnuR <1 + 8Re) = 6mmuR <1 +

dTnu

L L
In(3.70v /uR)

8.3.3 Inside the laminar Wake

Wake is due to fluid particles that move along the
streamlines passing close to a body. Pressure gradi-
ents force the particle around the body, but because
of the internal friction it cannot fall back to its orig-
inal height. The new height marks a line, the wake.

Navier-Stokes inside wake and its solution.

Equation is diffusion-like

v, 0? n 0?2 v
U =v|=-—4+—
Ox 022 oy )"
1 ( 22+ y2)
vy X —exp | —u
v 4vx

Derivation Write NSE in x coordinate Approxi-

mate (v-V)v ~ (u-V)v = Ua:a Pressure doesn’t
change much across the wake — g—g ~ 0. Solve
by switching to Fourier space. Then uavgia(:k) =

—nk?v,, hence vy (k,x) o< exp(—nk%z/u). Upon re-
transforming v, follows as above.

Transverse size is the width of the wake

width ~ \/V - distance from body
u

Derivation x is distane away from body with width

2
< gyg, g %, hence (v-V)v ~ u%

uv

y of wake. -

and HVQU ~ na—yg 77—2 Compare to get y ~ /1L ~
7
uT < .

Wake is laminar because Re ~ % ~x 2 0.

8.4 Drag and Lift with a Wake
Drag and lift

F,=—pu // v, dy dz (drag)
Wake

fy—pu</ —/)vydy—pu%v-dl (lift)
o T

Derivation Start by F; = ¢1I1;,dS, = $(po +

P )0ik + p(u; + v;)(ug + vi) dSk, where py = const. is
pressure at infinity. Neglect constant and quadratic
Write (ff ff)dydz =

Outside wake integral vanishes,

in v terms (v < u)

§dS.

p' &~ —puv, (Bernoulli), hence the integrals reduce

because

to the wake only. For the lift use same Ansatz
pu ( I =, x) vy dydz. Add constant vanishing in-
tegrals at y =

F,= [ f,d=.
Lift of wing explained with vy > vy = ps < p1.

+const to make it a line integral.

However fluid particles do not meet again at the end
of the wing.

9 Turbulent Flows

9.1 Symmetry Breaking

Symmetries are broken with increasing Reynolds
number in the following order:

14



1. Left-right symmetry is broken,

. time invariance discretizes, i.e. solution become
periodic,

up-down symmetry is spontaneously broken (von
Karman vortex street),

4. z-axis translation symmetry is broken,

5. flows become chaotic,

6. symmetries are restored in a statistical sense.

9.2 Instabilities

Instabilities occur when small perturbations am-
plify. For solutions v; = A(t)vi(r), we can make a
Landau expansion

djA?

=2 |A]2 —alAl* — ...
& 71|Al" — alA]

and get for a > 0
|A‘maas 0.8 (Re - Recritical)l/z

For o < 0, we add a term of sixth order —3|A|® and
get

o

ﬁi

’A‘max X

Derivation Steady solution wvy(r), small perturba-
tion vy(r,t). Pressure p = py + p1(r,t). Substi-
tute into NSE, linearize (drop (v1 - V)v1) to get the
Eigen value problem % + (vo - V)v1 + (v - V)vg =
—% + vAv; and divev; = 0 with BC v; = 0.
Fourier series v; = Y. v,(r)e”™! = A(t)vi(r). Un-
stable if for one Sw > 0. Write A(t) oc ent—wit
for short times (after that: saturation). Expand
d‘(ﬁp = 2v|A]?2 + —a|A|* + O(6) (odd terms van-
ish from averaging). Solve for a > 0 and maximize.

Expand ~; near Re. s.t. 71 &« Re — Re.. For a < 0
add —B|A|% term.

Kelvin-Helmholtz instability occur between two
tangential layers traveling with different velocities.
Small asymmetries lead to larger/smaller velocities.
This leads to to smaller/larger pressure. This makes
the velocities even larger/smaller and so on.

9.3 Developed Turbulence

Behavior at large Re is important because for
example already a small river has Re ~ 10°.

15

Mean dissipation energy Energy dissipation re-
mains constant in the limit Re — oo although v — 0.
It is given by
ud
€= W(Vavp)) = (v f) ~
where R is the radius of the body.

Derivation FEstimate: Fluid with large Re, body
with radius R. During time 7 ~ % body gets mo-
mentum p ~ pR3u from fluid. Drag force F ~ £ ~

2,2 _ F
pR7u”. Thene—pT“S.
Quantitative: Add random force ! (;’t) to NSE with

(fa(t,r)fa(t', ")) = 0(t — t')xap(r — 7). Multiply
NSE by v and integrate to obtain %f”;ddr
—v [(Vaup)?d¥r + [ f - vd9r = -dissipation + en-
ergy injection. For stationary state mean energy is

constant.

Energy cascade picture Energy is injected into
large scale motion ~ L (energy containing scale).
Large eddies break into smaller and even smaller ed-
dies without loss of energy. These tiny eddies at vis-
cous scale ~ \ dissipate energy (dissipative scale).
The ratio L/\ grows as Re increases.

9.4 Kolmogorov Theory of developed
Turbulence

vl

Scale dependent Reynolds number Re;
Viscosity becomes important for Rey ~ 1.

Initial range is the region A < r < L. Assumption
is that all properties are independent on viscosity.

Kolmogorov Obukov law relates velocity varia-
tions over distances

Av(l) ~ (el)'/3. (Kolmogorov Obukov)

Separation of two point of fluid grows with time as

S1%(t) o 3. (Richardson)

P . . . L
Dissipative scale A is given by A\ ~ s K L.

Derivation KO law: From dimensional estimate € ~
3
(du) Richardson: Use I3 ~ v3t3 ~ €lt3. Scale: Write

S
Re, Av(1)l (L)' (%)4/3 ~ Re (%)4/3_
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Use Rey ~ 1 to determine A.
0

Karman-Howarth equation g (v(z)v(y))
3Va((v(z) — v(y))(v(x) — v())?) — 2(Vavg(2) -

Vavﬂ(y» + Xaa(Lzy)



Derivation TODO

Kolmogorov’s 4/5 law is given by Sg(r) =

—%er. In 3D it becomes

Sy(r) =

——€r

i still dont know what S:! (r) is
Derivation TODO

9.5 Intermittency
TODO

9.6 The Energy Spectrum
TODO

10 Waves

10.1 Gravity Waves

We are interested in the potential ¢ such that v = Vo
and the dispersion relations.
Equation to solve is

do 10%p
2 = —_ _—— —
Vie=0, (82+98t2>220 0

with boundary condition g—f[z:_h =0.

Derivation Neglect non-linear term: if the ampli-
tude a < A (estimate as (v - V)v ~ % ~ X2
and % ~ %). Assume incompressible pot flow, i.e.
rotv = dive = 0, hence V?p = 0. Rewrite Eu-
ler’s without non-linear and ¢, s.t. there is a V be-
fore all terms. Kill V to get expression for the pres-
). Redefine

Take time derivative, use v, = %

sure. Then at surface pg = —p (gg + %‘f

© — @+ pot/p.

and v, = g—f.

Deep water Trajectories are circles, dispersion is
non-linear.

w=/gk

© = Aek* cos(kx — wt),

Shallow water Trajectories are ellipses, dispersion
is linear w? = kgtanh(kh) ~ ghk? for kh < 1.

w = +/ghk

@ = Acosh(k(z + h)) cos(kz — wt),

Derivation Use Ansatz ¢ = f(z) cos(kx—wt). Then
V2p = 0 results in f(z) = e** for deep water (BC
f — 0 for z - —o0) and f(z) = cosh(k(z + h))
for shallow water (BC f'(z = —h) = 0).

results in dispersion rel w? = gk.

Second eq

Damping of gravity waves Amplitude of wave de-

creases as exp(—~t), where v = 2‘; ‘;4 is the damping
coeflicient.

e s . dE
Derivation Change in  energy 3

2

Use averaging % = u fo%/w dE 2
—8nk* [ @2 dV. Average energy FE =

Damping coefficient

fpﬁdv = 2pk? [p2dV.

21/w

T= 2E = 2wk* =
Alternative: Dlmensmnal guess for dispersion rela-
tion. For deep water, the parameters are w, k, g. For

shallow water, h additionally.

Circle expansion w? = gk <= r = gt?: the
circles expand with the acceleration of the free fall.

10.2 Dispersive Waves

Circular Waves on the Deep Water the defor-
mation and the radius of the n-th ripple are

gt? gt? gt?

€O<7'3COS<4T>’ = S
Derivation Use Ansatz @ o efFetkr—ivt - ge
Vip = 0, g £+ atg = 0 to derive dispersion
w? = gk. Integrate all k to get ¢(z = 0) =

¢ = feik-rfi\/ﬁt 42k = feikr60597iftk dkdep. Use
method of stationary phase f(t) = [e™@dr ~
tlh’?ZT e eith(xo) gigsen(h"(20)) - Determine h(k), cal-
culate derivatives and pluck into solution first for &
integral, then for ¢ integral to obtain sol above.

Group velocity is given by § 3“’ sucht that
8w
81{:

Derivation Use Ansatz ¢ = e’*7 f(r) with f(r) =
Dk f,€97 slowly varying. 'Tay'lor wk+q) =
w(k)—g—zq to obtain p(r,t) = ek TwR)If (p g—j‘;t).

S0(7,7t> _ eik-rfw(k:)tf (
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Kevin angle: Ship Waves have a group velocity

of vy = %\/% Then the maximal angle 6y of the

ship wave cone is 0y ~ 19.5° (Kelvin angle).

Derivation Sum over all rings h o ffoo hy dt,
u = gt?/4r(t).
from triangle including source of wave, position of
ship now and position of interest, then r(t) =
V' R?2 + v2t2 + 2Ruvt cos A, where 6 is the angle and

R the distance between the ship now and the point

hy o< exp(iu(t)), Determine r

of interest. Use method of stationary phase (largest
contribution comes from region near extremum) 0 =
@ = ... o< v*t3Rvtcosf + 2R
sinf < sinfp = 1/3.

Roots negative for

Capillary Waves are surface waves that take the
change of surface energy into account. The general-
ized wave equation and its dispersion relation are

B Oy 0% 0 (0% 0%*p
V=195, T Pop ~ (axzw@p .
w? = gk + —k?’.
P

For k < k. = \/pg/a we get capillary waves with
w? = ak3/p.

Derivation Molecules at surface have higher en-
ergy. Change of surface S = [ /14 (V2()?dzdy ~
[1+ 3(V¢)?*d?, then &S [V¢vecair =
—f V2 )6¢Cd?r.  Balance change of surface en-
ergy by pressure @S — [pd¢dS = 0 to get p =

( 523 —|— ) Add to equation from gravity waves

p = —p(gC + W)' Take time derivative from ob-

. . oc _ Op
tained expression and use z = v, = F- to get
the above generalized wave equation. Use Ansatz

© = AkF# cos(kx — wt) to obtain dispersion.

Rayleigh-Taylor or: why does water pour out of
overturned glass? w(k) = ,/—gk + %k?’ is imaginary
for small k ~ %, where r is the radius of the glass,
and unstable with respect to ripple formation.

10.3 Sound

Equation of sound waves for adiabatic motions
with small rel changes p = po + p/, p = po + p/ with
constant eq pg, pg and p' < po, p' < po.

—AV2X =0 with ¢= (ap)
dp

0*X
o2

where X = p/, o, v, p.

Dispersion for sound waves obeying the above
equation is linear

w = ck.

Derivation Assume small relative changes, then for-
mulae for p, p follow Continuity eq 88% +podive =0,
7 + Vp
non-linear terrn drops out).

Euler’s eq &2 0 (oscillations are small,
For adiabatic motion
p = (g%)s p. Take % of continuity eq, div of Eu-

ler’s eq and combine to obtain wave equation for p'.

Solution for 1D sound wave is ¢ = fi(x — ct) +
fa(z + ct)

Sound waves are longitudinal v = grad ¢, only
vy non-zero = v | k.

Sound wave pressure variation p’' = ppvc <
p/
2R / )
N 2 P _ (v
from Bernoulli p’ ~ pov? <= £ = ().

= is larger than in an incompressible flow where

Derivation For ¢ = f(z — ct),

/

o)
Y = —pog; = pocf'(xz — ct).
p' = c?p'. Note that we assume p’ < p.

0
v = af: = f'(z — ct),
Equate f’ and use

9p — 9p
Isothermal speed of waves ( 8p>S = 7( aP)T
with v = i—’v’ For p = nkgT = —pkn’?LT we get
¢ =yt

Motion is adiabatic if the displacement during one
period of oscillation is much less than the wavelength
of the oscillation, i.e. [ < .

Derivation If molecules move diffusion like with ve-
locity vy, then (R2?) ~ vglt, where [ is the mean free

pass. Thermal equilibrium is slow if v, lT = (R?) <
A2, then vyl < e\ and use ¢ ~ vy,

. . . dp
Spherical Wave obey the equation of motion 55 =

2 —

7%% <r22—f) with general solution ¢ = M +
M. Amplitude decreases as 1/r, intensity as
1/r%.

Sound in a moving Medium has the dispersion
relation

w=clk|+u-k

ow

and velocity of propagation g = % + u.

Derivation Consider moving reference frame K and
system moving with the fluid K’. Then v’ = r — ut.
Insert into Ansatz ¢ x exp(ik - v’ — ikct).
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Doppler Effect, moving observer w = ck—u-k = B.3 Reverse Product Rule

1-% 0).
wo(1 — % cost) i
dz

af _ dg
wo 9dz = da:f

Doppler Effect, moving source w = T=Zcos0"

K' of source (sys-
ke.
moving with observer fluid has velocity —u. Thus

Derivation Mowving observer:

tem at rest) with frequency wy = K system B.4 Geometric Identities

w=ck—u-k. njz = 0,=0
Moving source: K' of source (system moving) with w =u(z,y),u| 2 = divu=0 = Au, =0
frequency wo = ck(1 — % cos @), fluid moves with ve-

locity —u. K system of observer (at rest) has w = ck.

Thus w = =53 B.5 Integration of cylindical Equation
Expressions like & d?“ rﬁ{ ) = A = const. are inte-

A Vector Identities & Indices grates as f = 1Ar? + Blogr + C, where B,C are

integration constants.
Vector Identitites

rot gradv =0 L.
B.6 Both terms need to vanish indepen-

div rotv =0 dently

rot rotv = grad dive — Vv

v?2 If expressions like da(...) +da - b(...) = 0 need to hold
(v- Vo=V |—)—vxrotv
9 for all da.
Index notations C Math Shit I should know, but
dive = % don’t
al’k
of . .
[grad f]; = B C.1 Spherical Coordinates
81)1'
[(v-V)v]; = vy i
_8f 1 8f 1 of
[div gradv]; = aa <gvl> v “or T r 90" " rsing 8306@
TG 10 ( ,0f 1 of
82,')‘ Af = + N Sl 9
[VZv]; = [(V - V)v); = ! 2or \ or) " 12sing ae 00
8wk8mk 1 &
Vx(AxB)=A(V-B)-B(V-A)+ (B-V)A - 72 sin’ 0 Op?
(A-V)B v. _19(r*vy) 1 O(vgsinf) 1 v,
T e rsinf 00 rsinf dp
. 1 (O(vysin®) vy
B Tricks Vxv=- ( 50 95 )€
Some reoccurring tricks used in derivations. 1 1 % _ Orv, ey
r \sinf dp or
. . 1 /0Orvg Ovy
B.1 Partial Integration r( 5 50 > e
B.2 Taking surfaces to Infinity dl =dre, + r dfey + rsin dpe,,

At infinity there are usually no deformations wu;,
hence integrals like f o Sy vanish.
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dS =r?sin 6 df dye, + rsinf dr dpeg + rdr dfe,
dV =r?sinfdr df dy



C.2 Cylindrical Coordinates

_of, . 1of ~ Of
v/ _87“er+ r&pew—i_ 6262
10 ([ of 1 0%f  O0*f
A —__ 7 - v -
/ ror <T8r> + r2 02 + 022
_19(rvy) | 10v,  Ov,
r o Or rdp 0z

va—(lavz—a%>e +<8vr_8vz)e
rdp 0z ) oz or) %
+1 (87“1)@ B 8%) .
r \ Or oo ) *©
dl =dre, + rdye, + dze,

dS =rdedze, +drdze, + rdrdee,
dV =rdrdepdz

V-v




