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1 Cooperative Games
1.1 Definition
Cooperative Game

• players: N = {1, 2, . . . , n} (finite)

• coalitions: C ⊆ N form in the population and become players
resulting in coalition structure ρ = {C1, C2, . . . , Ck}.

• payoffs: φ = {φ1, . . . , φn} something like φi =
φ(ρ, ”sharing rule”).

Characteristic function form (CFG) game

• game: A CFG defined by tupel G(ν, N)

• players: N = {1, 2, . . . , n} (finite, fixed population)

• coalitions: disjoint C ⊆ N form resulting in coalition structure/
partition ρ = {C1, C2, . . . , Ck}.

• characteristic function: ν : 2N → R, ν(∅) = 0, is the character-
istic function form that assigns a worth ν(C) to each coalition

• outcome: partition ρ = {C1, C2, . . . , Ck} directly implies a
payoff allocation/ imputation φi = fi(Ci). There are no
side-payments and the worth of a coalition cannot be (re-
)distributed.

1.2 The Core

Assumption (Superadditivity) If two coalitions C, S are disjoint, then

ν(C) + ν(S) ≤ ν(C ∪ S),

i.e. mergers of coalitions weakly improve their worths.

Corollary 1.1 The grand coalition is efficient, i.e. ∑C∈ρ ν(C) ≤ ν(C).

Definition 1.2 (The Core) of a superadditive G(ν, N) consists of all out-
comes where the grand coalition forms and payoff allocations φ∗ are

• pareto-efficient, i.e. ∑i∈N φ∗i = ν(N) (”nothing should be wasted”),

• unblockable, i.e. for all C ⊂ N, ∑i∈C φ∗i ≥ ν(C).

Properties of the core A system of weak linear inequalities defines
the core, it is therefore closed and convex. The core can be empty,
non-empty, large. The core is somewhat both, descriptive and nor-
mative.

Definition 1.3 (Balancedness) Let α : 2N → [0, 1] assign a balancing
weight to any C ∈ 2n. A set of balancing weights is a balanced family
if, for every i, ∑C∈2n :i∈C α(C) = 1. Then, a superadditive game is called
balanced if for all balanced families ∑C∈2N α(C)ν(C) ≤ ν(N).

Theorem 1.4 (Bondareva-Shapley) The core of a cooperative game is
nonempty if and only if the game is balanced.

Limitations of the core The core may be empty, non-empty, but
inequitable (landowner gets everything), or large (any split of 1).

1.3 Shapley Value

Axiom (Shapley value) Given some G(ν, N), an acceptable allocation/
value x∗(ν) should satisfy

• Efficiency ∑i∈N x∗i = ν(N)

• Symmetry If, for any two players i, j, ν(S ∪ i) = ν(S ∪ j) for all S
not including i, j, then x∗i = x∗j .

• Dummy player If, for any i, ν(S ∪ i) = ν(S) for all S not including
i, then x∗i = 0.

• Additivity If u, v are two characteristic functions, then x∗(u + v) =
x∗(u) + x∗(v).

Theorem 1.5 (Shapley Value) The unique function satisfying all four
axioms for the set of all games is

φi(ν) = ∑
S⊂N:i∈S

(|S| − 1)!(n− |S|)!
n!︸ ︷︷ ︸

average operator (number of orders)

(ν(S)− ν(S\{i}))︸ ︷︷ ︸
marginal contribution

.

Is it S ⊂ N or really S ∈ N, which I think wouldn’t make sense? The
shapley value is always unique, feasible, payable, but may not be in the
core.

Axiom (Young) A set of equivalent axioms is

• Efficiency ∑i∈N x∗i = ν(N)

• Symmetry If, for any two players i, j, ν(S ∪ i) = ν(S ∪ j) for all S
not including i, j, then x∗i = x∗j .

• Monotonicity If u, v are two characteristic functions and, for all S
not including i, u(S) ≥ v(S), then x∗i (u) ≥ x∗(v).

Relationship Core and Shapley value None. Shapley value is nor-
mative, Core is hybrid. When Core is nonempty, the Shapley value
may lie inside or not. When the Core is empty, the Shapley value is
still uniquely determined.

Non-transferable-utility cooperative game

• game: A CFG defined by tupel G(ν, N)

• players: N = {1, 2, . . . , n} (finite, fixed population)

• coalitions: disjoint C ⊆ N form resulting in coalition structure/
partition ρ = {C1, C2, . . . , Ck}.

• characteristic function: ν : 2N → R, ν(∅) = 0, is the character-
istic function form that assigns a worth ν(C) to each coalition

• outcome: partition ρ = {C1, C2, . . . , Ck} and payoff allocation
φ = {φ1, . . . , φn}. Each coalition’s payoff ν(Cj) may be shared
among all players i ∈ Cj (transfer of utils) such that for all
j = 1, . . . , k the share is feasible, i.e. ∑i∈Ck

φi ≤ ν(C).

Agents have preferences over coalitions.

1.4 Matching Problem
Diese Section ist noch nicht fertig, weil wir sie nicht verstanden
haben.

matching problem

from NTU tu TU matching was bedeutet diese folie? bzw was be-
deutet NTU und TU allgemein? inwiefern passt das matching prob-
lem zu NTU? inwiefern haben wir vorher nur TUs behandelt?

Theorem 1.6 (Gale-Shapley) For any marriage problem, one can make
all matchings stable using the deferred acceptance algorithm.

2 Non-cooperative Games
2.1 Definition
Non-cooperative Game

• players: N = {1, 2, . . . , n} (finite)

• actions/ strategies: each player chooses si from his own finite
strategy set, Si for each i ∈ N. Resulting strategy combination:
s = (s1, . . . , sn) ∈ (Si)i∈N .

• payoffs: ui = ui(s) resulting from the outcome of the game
determined by s.

2-player games

• Prisoner’s dilemma: social dilemma, tragedy of the commons,
free-riding. Conflict between individual and collective incen-
tives.

• Harmony: aligned incentives. No conflict between individual
and collective incentives.

• Battle of the sexes: coordination. Conflict and alignment of
individual and collective incentives.

• hawk dove/snowdrift: anti-coordination. Conflict and align-
ment of individual and collective incentives.

• Matching pennies: zero-sum, rock-paper-scissor. Conflict of
individual incentives.

1



2.2 Overview of Solution Concepts
Solution concept is a formal rule for predicting how a game will be
played. These predictions are called solutions and describe, which
strategies will be adopted by players and therefore the results of the
game.

Definition 2.1 (Equilibrium/ solution ) is a rule that maps the struc-
ture of a game into an equilibrium set of strategies s∗.

Definition 2.2 (Best response) Player i’s best response (or, reply) to the
strategies s−i played by all others is the strategy s∗i ∈ Si such that

ui(s∗i , s−i) ≥ ui(s′i , s−i) ∀s′i and s′i 6= s∗i .

Definition 2.3 ((Pure strategy) Nash equilibrium) All strategies
must be best responses

ui(s∗i , s−i) ≥ ui(s′i , s−i) ∀s′i and s′i 6= s∗i .

Braess’ Paradox 60 people travel from S to D over either A or B.
The nash equilibrium without a middle road is that 30 people travel
over A and 30 people travel over B. With the middle road, the nash
equilibrium is such that all people travel from S to A, then the mid-
dle route to B and from there to D. The total travel time worsens to
120 min.

3 Preferences and Utility
3.1 Preferences

Definition 3.1 (Binary relation) � on a set X of decision alternatives
for a player is a non-empty subset P ⊂ X × X. We might write x � y if
and only if (x, y) ∈ P with interpretation that the player weakly prefers x
over y. Let similarly x � y denote player’s strict preference of x over y and
x ∼ y an indifference between x and y.

3.2 Modern Assumptions on Preferences

Axiom (Completeness) ∀x, y ∈ X : x � y or y � x or both.

Discussion Completeness For Consumers/ agents/ humans it is
hard to rank options, because decision making takes time and effort
and the agents might be uninformed, uncertain, unable to evaluate
what a product is and does, subject to biases/ inattention. Examples
were the Chinese vegetables.

Axiom (Transitivity) ∀x, y, z ∈ X : if x � y and y � z, then x � z.

Discussion Transitivity Consumers/ agents/ humans often find
it difficult to rank choices coherently. Ranking depends on many
dimensions (speed, space, etc) and different needs. Example were
the three cars ranked.

Axiom (Continuity) Let � be a rational preference ordering on X. For
x ∈ X define the set of alternatives that are (weakly) worse/ better tan x

W(x) = {y ∈ X : x � y}, B(x) = {y ∈ X : y � x}.

Then B(x), W(x) are closed sets for all x ∈ X.

3.3 Utility

Definition 3.2 (Utility function) for a binary relation � on a set X is a
function u : X → R such that

u(x) ≥ u(y) ⇐⇒ x � y.

Proposition 3.3 (Existence 1) There exists a utility function for each
complete, transitive, positively measurable, and continuous preference or-
dering on any closed set.

Proposition 3.4 (Existence 2) There exists a utility function for every
transitive and complete preference ordering on any countable set.

3.4 Expected-utility theory
Utility 6= Payoff Game: if head turns up at n-th toss you win n
CHF. Then the expected payoff E[lottery] = ∞. From Bernoulli’s
suggestion of diminishing marginal utility of wealth and the need

for utility characterization under uncertainty, this lay the foundation
for expected utility theory.

wieso folgt aus diesem game über theory of diminishing marginal
utility, dass utility 6= payoff und damit expected utility theory + was
hat expected utility theory mit independence of irrelevant alterna-
tives zu tun?

Setting Let T = {τ1, . . . , τm}, τi ∈ Rm such that (τi)j = δij,
i = 1, . . . , m, be a finite set and let X consist of all probability dis-
tributions on T:

X = 4(T) = {x = (x1, . . . , xm) ∈ Rm
+ :

m

∑
k=1

xk = 1}

Axiom (Independence of irrelevant alternatives)

∀x, y, z ∈ X, ∀λ ∈ (0, 1) : x � y =⇒ (1− λ)x + λz � (1− λ)y + λz

Example 3.5 Agent prefers Asian food over Italian, but occasionally likes
Italian. Then sushi � pizza 6=⇒ (1−λ) sushi + λ wontons � (1λ) pizza
+ λ wontons.

Discussion Independence of irrelevant alternatives It must be pos-
sible for any decision to be broken down into its smallest parts, i.e.
it is reductionist, because the axiom always compares only two deci-
sions.

Bernoulli function/ von Neumann-Morgenstern utility function If
� is a binary relation on X representing the agent’s preference over
lotteries over T. If there is a function ν : T → R such that

x � y ⇐⇒
m

∑
k=1

xkν(τk) ≥
m

∑
k=1

ykν(τk)

then

u(x) =
m

∑
k=1

xkν(τk)

defines a utility function for � on X.

Theorem 3.6 (von Neumann-Morgenstern) Let � be a complete, tran-
sitive and continuous preference relation on X = 4(T), for any finite set
T. Then � admits a utility function u of the expected-utility form if and
only if � meets the axiom of independence of irrelevant alternatives.

Allais paradox Sets such that people tend to choose x1 � x2 and
x3 � x4, but it can be shown that x1 � x2 implies x4 � x3, which is
a contradiction.

Sure thing principle A decision maker who would take a certain
action if he knew that event B happens and also if he knew that
not B happens, should also take the same action if he knew nothing
about B. In easy: would you take an action independent of knowing
B, do it.

Lemma 3.7 (Characterization of sure thing principle) Assume that
everything the decision maker knows is true then sure thing principle is
equivalent to independence of irrelevant alternatives.

3.5 Comparability

Theorem 3.8 (Translation invariance) Given a Bernoulli function ν for
given preferences �, let µ′ = α + βν, where α ∈ R, β ∈ R+. Then ν′ is
also a Bernoulli function for another utility function

u′ = α + βu.

That is, expected utility functions are unique up to a positive affine trans-
formation.

Ordinality and cardinality

• Ordinal utility function: only comparisons u(x) ≥ u(y) are
meaningful, e.g. she likes x less than y.

• Cardinal utility function: also differences u(x)−u(y) are mean-
ingful, e.g. she likes x over y twice as much as y over z.
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• Util: fundamental measure of utility (util) that is not invariant
to any transformations, e.g. she likes x five times more than y.

Interpersonal comparability (IC) is a utility function, where util-
ity differences between players make ”sense”. Ordinal and cardinal
utility function are possible IC, utils are IC. For example, a cardinal
utility function that is IC under some non-affine increasing trans-
formation is still IC, but not cardinal anymore. However, compar-
ing utilities between agents is almost always impossible and implies
some welfare statement/ judgment. can we compare utils or not?

was ist nicht IC? beispiel und gegenbeispiel für IC ordinal und car-
dinal functions?

3.6 Risk

Definition 3.9 (Lottery) TODO

Definition 3.10 (Risk-neutrality) An agent is risk-neutral if and only if
he is indifferent between accepting and rejecting all fair gambles, that is for
all α, τ1, τ2

E[u(lottery)] = αν(τ1) + (1− α)ν(τ2) = u(ατ1 + (1− α)τ2).

An agent is risk-neutral if and only if he has a linear von Neumann-
Morgenstern utility function.

wieso folgt die zweite gleichheit? was ist u(ατ1 + (1− α)τ2)?

Definition 3.11 (Risk-aversion) An agent is risk averse if and only if he
rejects all fair gambles, that is for all α, τ1, τ2

E[u(lottery)] = αν(τ1) + (1− α)ν(τ2) < u(ατ1 + (1− α)τ2),

which is a strictly concave utility function.

Definition 3.12 (Risk seeking) An agent is risk seeking if and only if he
strictly prefers all fair gambles, that is for all α, τ1, τ2

E[u(lottery)] = αν(τ1) + (1− α)ν(τ2) > u(ατ1 + (1− α)τ2),

which is a strictly convex utility function.

why is that convex? aren’t u and ν interchanged?

Remarks If you believe that people have preferences, under ”rea-
sonable” axioms we can translate them into utility functions. Nev-
ertheless, we should always be aware that our analysis is based on
several assumptions/ axioms. Money is not equal to utility (recall
diminishing marginal utility). Preferences do not have to be self
regarding (”homo economicus”).

4 Normal Form Games
4.1 Definition

Definition 4.1 (Normal form game) A normal form (or strategic form)
game consists of three objects.

• Players: N = {1, . . . , n} with typical player i ∈ N

• Strategies: For every player i, a finite set of strategies, Si, with typical
strategy si ∈ Si.

• Payoffs: a function ui : (s1, . . . , sn) → R mapping strategy profiles
to a payoff for each player i, and an overall mapping u : S→ Rn.

Thus, a normal form game is represented by the triplet G =
〈N, {Si}i∈N , {ui}i∈N〉.

Definition 4.2 (Strategy profile) A set s = (s1, . . . , sn) is called a strat-
egy profile. Is is a collection of strategies, one for each player. If s is played,
player i receives ui(s).

Definition 4.3 (Opponents strategies) Write s−i for all strategies ex-
pect for the one of player i. So a strategy profile may be written as
s = (si, s−i).

4.2 Rationality and Dominance

Definition 4.4 (Dominance) of strategies over other strategies.

• Strict dominance: a strategy si strictly dominantes s′i if ui(si, s−i) >
ui(s′i , s−i) for all s−i.

• Weak dominance: a strategy si weakly dominantes s′i if ui(si, s−i) ≥
ui(s′i , s−i) for all s−i.

• Dominated strategy: a strategy s′i is strictly dominated if the is an
si that strictly dominates it.

• Dominant strategy: A strategy si is strictly dominant if it strictly
dominates all s′i 6= si.

If players are rational they should never play a strictly dominated
strategy, no matter what others are doing. They may play weakly
dominated strategies.

Definition 4.5 (Dominant-Strategy Equilibrium) The strategy profile
s∗ is a dominant-strategy equilibrium if, for every player i, ui(s∗, s−i) ≥
ui(si, s−i) for all strategy profiles s = (si, s−i).

Assumption of Rationality assumes that players are rational deci-
sion makers and that mutual rationality is common knowledge, that
is: I know that she knows that I will play rational, she knows that ”I
know that she knows that I will play rational”, and so on. Further
suppose that all players know the game and that again is common
knowledge.

Iterative deletion of strictly dominated strategies If the game and
rationality of players are common knowledge, iterative deletion of
strictly dominated strategies yields the set of ”rational” outcomes.

Battel of sexes as example with no dominated strategy

5 Equilibria

Definition 5.1 (Nash Equilibrium) is a strategy profile s∗ such that for
every player i

ui(s∗i , s∗−i) ≥ ui(si, s∗−i), ∀si.

At s∗, no i regrets playing s∗i . Given all the other players’ actions, i
could have not done better. No player can improve utility by chang-
ing strategy.

Definition 5.2 (Best-reply Function) for player i is a function Bi such
that

Bi(s−i) = {si|ui(si, s−i) ≥ ui(s′i , s−i) ∀s′i}.

Definition 5.3 (Nash Equilibrium) A strategy s∗ is a Nash equilibrium
if and only if s∗i ∈ Bi(s∗−i) for all i.

A Nash Equilibrium is a strategy profile of mutual best responses
each player picks a best response to the combination of strategies
the other players pick.

Game # Nash-equilibrium Comment

Prisoner’s
dilemma

1 both confess Worst outcome

Harmony 1 (cooperate, cooperate) Best outcome

Battle of the
sexes

2 (Boxing, Boxing),
(Shopping, Shopping)

Good outcome,
both pareto opti-
mal

hawk dove/s-
nowdrift

2 (Hawk, Dove),
(Dove, Hawk)

Both pareto opti-
mal, but perhaps
(Dove, Dove) ”bet-
ter”

Matching
pennies

0

Pareto optimality is a measure of efficiency or optimality. An out-
come of a game is Pareto optimal if there is no other outcome that
makes every player at least as well off and at least one player strictly
better off. Pareto optimality is not a solution concept.

3



5.1 Mixed Strategies

Definition 5.4 A mixed strategy σi for a player i is any probability distri-
bution over his or her set Si of pure strategies. The set of mixed strategies
is

4(Si) =

{
xi ∈ R

|Si |
+ : ∑

h∈Si

xih = 1

}
.

Definition 5.5 (Mixed extension) of a game G has players, strategies
and payoffs Γ = 〈N, {Si}i∈N , {Ui}i∈N〉, where strategies are probability
distribution in the set 4(Si) and Ui is player i’s expected utility function
assigning a real number to every strategy profile σ = (σ1, . . . , σn).

Definition 5.6 (Expected utility function)

Ui(σ) = ∑
s

ui(s) ∏
j∈N

σj(sj)

Definition 5.7 (Opponent’s strategies) σ−i is a vector of mixed strate-
gies, one for each player, except i. So σ = (σi, σ−i).

Definition 5.8 (Best-reply function) for player i is a function βi such
that

βt(σ−i) = {σi|Ui(σi, σ−i) ≥ Ui(σ
′
i , σ−i) ∀σ′i }.

Best-reply graph TODO

Definition 5.9 (Mixed-strategy Nash Equilibrium) is a profile σ∗

such that

Ui(σ
∗
i , σ∗−i) ≥ Ui(σi, σ∗−i) ∀σi, i.

Proposition 5.10 x ∈ ∆(S) is a Nash equilibrium if x ∈ β(x).

p31/48 was heisst das si ∈ supp(xi) =⇒ si ∈ β(x)?

sind expected utility und Ui gleich?

Theorem 5.11 (Nash’s existence) Every finite game has at least one
[Nash] equilibrium in mixed strategies.

A strictly dominated pure strategy cannot play a part in a Nash
equilibrium

Theorem 5.12 (Wilson) Generically, any finite normal form game has an
odd number of Nash equilibria.

“Generically” means that if you slightly change payoffs the set of
Nash equilibria does not change. For example consider continua of
nash equilibria, perturbing payoffs slightly (usually?) results in an
odd number of nash equilibria only, which makes the theorem still
hold.

Proposition 5.13 (Nash equilibria are perserved by transformation)
Any two games G, G′, which differ only by a positive affine transformation
of each player’s payoff function have the same set of Nash equilibria.

Adding a constant c to all payoffs of some player i which are associated with
any fixed pure combination si for the other players sustains the set of Nash
equilibria.

Remarks Nash equilibrium is a powerful concept since it exists (in
finite settings). But there are often a multitude of equilibria. There-
fore game theorists ask which equilibria are more or less likely to
be observed. We will focus next on a static refinements, strict and
perfect equilibrium. Later we will talk about dynamic refinements.

5.2 Equilibria Refinements

Definition 5.14 (Strict Nash Equilibrium) is a profile σ∗ such that
Ui(σ

∗
i , σ∗−i) > Ui(σi, σ∗−i) for all σi, i.

Definition 5.15 (ε-perfection) Given any ε ∈ (0, 1), a strategy profile σ
is ε-perfect if it is interior (xih > 0 for all i ∈ N and h ∈ Si) and such that

h /∈ βi(x) =⇒ xih ≤ ε

Definition 5.16 (Perfect equilibrium) A stratefy profile σ is perfect if it
is the limit of some sequence of εt-perfect strategy profiles xt with εt → 0.

trembling hand perfection, wie kann man sich das intuitiv vorstellen
und wie kann man es effizient überprüfen?

Proposition 5.17 (Selten) For every finite game there exists at least one
perfect equilibrium. The set of perfect equilibria is a subset of the set of
Nash equilibria.

Proposition 5.18 Every strict equilibrium is perfect.

6 Dynamic Games

Definition 6.1 (Extensive-form Game) is defined with the following.

• Players, N = {1, . . . , n}, with typical player i ∈ N (Nature can be
one of these players).

• Basic structure is a tree, the game tree with nodes a ∈ A. Let a0 be
the root of the tree.

• Nodes are game states which are either decision nodes, where some
player chooses an action, chance nodes, where nature plays according
to some probability distribution.

Extensive form is a directed graph with single initial node. Edges
represent moves, probabilities on edges represent Natures moves.
Nodes that the player in question cannot distinguish (information
sets) are circled together (or connected by a dashed line).

Extensive and normal forms A strategy is a player’s complete plan
of action, listing move at every information set of the player. Dif-
ferent extensive form games may have same normal form (loss of
information on timing and information).

Number of player’s strategies is the number of actions available at
each of his information set.

Subgames Given a node a in the game tree consider the subtree
rooted at a. The node a is the root of a subgame if

• a is the only node in its information set

• if a node is contained in the subgame then all of its successors
are also contained in the subgame.

• every information set in the game either consists entirely of suc-
cessor nodes to a or contains no successor node to a.

what is an information set?

können so nicht keine knoten roots von subgames sein, vor denen
ein information set gelagert ist?

Definition 6.2 (Strategies in extensive games)

• Pure strategy si: one move for each information set of the player

• Mixed strategy σi: any probability distribution xi over the set of pure
strategies Si.

• Behavior strategy yi: select randomly at each information set the
move to be made. Moves are made with independent probabilities at
information sets.

what are behavior strategies?

37/47: ”The indicated outcome, with probabilities in brackets, re-
sults from the mixed strategy”, was bedeutet das? wieso folgt da-
raus, dass es keine behavior strategy gibt?

Definition 6.3 (Perfect recall) Player i in an extensive form game has
perfect recall if for every information set h of player i, all nodes in h are
preceded by the same sequence of moves of player i.

Definition 6.4 (Realization equivalent) A mixed strategy σi is a real-
ization equivalent with a behavior strategy yi if the realization probabilities
under the profile σi, σ−i are the same as those under yi, σ−i for all profiles
σ.

Theorem 6.5 (Kuhn) Consider a player i in an extensive form with per-
fect recall. For every mixed strategy σi there exists a realization-equivalent
behavior strategy yi.

Definition 6.6 (Subgame Perfect Equilibrium) A behavior strategy
profile in an extensive form game is a subgame perfect equilibrium if for
each subgame the restricted strategy is a Nash equilibrium of the subgame.
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what does this restriction look like in the case of the Outside-option
game when the information set in the subgame is split? Before we
have strategies aa, ab, ba, bb, do we have a, b afterwards or still aa,
ab, ba, bb?

Theorem 6.7 Every finite game with perfect recall has at least one sub-
game perfect equilibrium. Generic such games have a unique subgame per-
fect equilibrium, where generic means that with probability 1 when payoffs
are drawn from continuous independent distributions.

Backward-induction First consider last decision and find Nash
equilibria, then use this information to consider what to do at the
second-to-last time and find the Nash equilibria there for each previ-
ous Nash. Continue until the root of the game is reached.

2 more games

• Outside-option game which is battle of the sexes, but player
1 can decide if she joins the game before. There exist three
subgame perfect equilibria, one for each equilibrium of the BS
game: {EA, A}, {TB, B}, {T(3/4A + 1/4B), 1/4A + 3/4B}.

• Centiped game with unique subgame perfect equilibrium stop
at all nodes.

7 Evolutionary Game Theory
Approaches in economics.

• The rationalistic paradigm in economics. A person’s behavior is
based on maximizing some goal function (utility) under given
constraints and information.

• The ”as if” approach. Do not theorize about the intentions of
agents’ actions, but consider only the outcome (observables).
Similar to the natural sciences where a model is seen as an ap-
proximation of reality rather than a causal explanation.

Mass-action interpretation A large population of identical individ-
uals represents each player role in a game. The game is played recur-
rently. In each period one individual from each player population is
drawn randomly to play the game. Individuals observe samples of
earlier behaviors in their own population and avoid suboptimal play
(successful strategies are copied more frequently). Nash’s claim is
that if all individuals avoid suboptimal pure strategies and the pop-
ulation distribution is stationary then it constitutes a [Nash] equilib-
rium.

Theorem 7.1 (Folk) If the population process converges from an interior
initial state, then for large t the distribution is a Nash equilibrium. If a
stationary population distribution is stable, then it coincides with a Nash
equilibrium.

what is a distribution in this context? bzw. was ist ein interior initial
state?

Definition 7.2 (Symmetric two player normal form game)
G = 〈N, {S}i∈N , {ui}i∈N〉 consists of three objects

• Players: N = {1, 2} with typical player i.

• Strategies: S1 = S2 = S with typical strategy s ∈ S.

• Payoffs: A function ui : (h, k) → R mapping strategy profiles to a
payoff for each player i such that u2(h, k) = u1(k, h) for all h, k ∈ S.

Definition 7.3 (Symmetric Nash equilibrium) is a strategy profile σ∗

such that for every player i

ui(σ
∗, σ∗) > ui(σ, σ∗) ∀σ.

Proposition 7.4 In a symmetric normal form game there always exists a
symmetric Nash equilibrium.

Not all Nash equilibria of a symmetric game need to be symmetric.

Definition 7.5 (Evolutionary stable Strategy) A mixed strategy σ ∈
∆(S) is an evolutionary stable strategy (ESS) if for every strategy τ 6= σ
there exists ε(τ) ∈ (0, 1) such that for all ε ∈ (0, ε(τ))

U(σ, ετ + (1− ε)σ) > U(τ, ετ + (1− ε)σ).

Let ∆ESS be the set of evolutionary stable strategies.

would probably be better to add an player index to the utility func-
tion Ui, although the game is symmetric (makes life easier, for exam-
ple what is ≥ for a vector?)

Proposition 7.6 (Characterization of ESS) A mixed strategy σ ∈
∆(S) is an evolutionary stable strategy (ESS) if

U(τ, σ) ≤ U(σ, σ) ∀τ

U(τ, σ) = U(σ, σ)⇒ U(τ, τ) < U(σ, τ) ∀τ 6= σ.

Theorem 7.7 (Relations) If σ ∈ ∆(S) is weakly dominated, then it is
not evolutionary stable. If σ ∈ ∆ESS, then (σ, σ) is perfect equilibrium. If
(σ, σ) is a strict Nash equilibrium, then σ is evolutionarily stable.

Relations of Equilibria Strict Nash equilibrium ⊆ Evolutionary
stability ⊆ Perfect equilibrium ⊆ Nash equilibrium

Notes Evolutionary game theory studies mutation processes (ESS).
The stable states often coincide with solution concepts from the ”ra-
tional” framework. Evolutionary game theory does not explain how
a population arrives at such a strategy. This is studied in behavioral
game theory.

8 Interactive Environments and distributed Control
Characteristics of distributed control applications Multiple de-
cision making agents, interdependency, no central authority, dis-
tributed information, collective performance. This constitutes a
game.

Centralized vs. distributed control Distributed information may
be costly in communication, it’s not just ”multi component” or
”graph structure”, and may result in efficiency loss due to tragedy
of commons or the price of Anarchy.

Distributed efficiency loss results from the difference in objective,
i.e. local objectives differ from collective objectives. The price of An-
archy quantifies the system’s ratio of centralized and decentralized
performance.

Game theory and distributed control have a lot in common. One
may even call distributed control the study of Game theory without
the machinery of Game theory.

8.1 Descriptive Agenda
what is descriptive and prescriptive agenda?

Descriptive agenda tries to describe and model: stylized models of
societal situations, emphasis on new insights, not necessarily design
tool, design only once behavior understood

?? The foundational assumptions are rationality, perception and
evolution. For example take the beauty game. Rationality results in
an Nash equilibrium of 0, however, player’s will play 1/2 of what
the expect others to play, i.e. perception. This may change over time,
which is evolution.

Learning/ evolutionary Games shift the focus away from solution
concepts, i.e. Nash equilibrium, towards how players might arrive at
solutions, i.e. dynamics. With distributed control, we now take the
opposite approach. Instead of describing a solution, we now identify
a target and dynamics that lead to this target.

8.2 Prescriptive agenda
Prescriptive agenda ??? was ist hier der entscheidende punkt?
22/47

8.3 Learning Rule
Near far search algorithm for bees Bees fly to different patches of
flowers foraging for nectar. If nectar per flower is abundant (high
payoffs), bees continue in the current patch with high probability. If
a series of flowers yields low payoff, bees fly far away to a new patch.
This is a successful strategy at the population level, implementing a
total payoff maximizing Nash equilibrium.

Single turbine modeled as game:

• Players i = 1, 2, . . . , n (windmills/ turbines)

• Finite strategy set Ai = {ai, bi, . . . , ki} (orientations)
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• Joint strategy space A = ∏i Ai (wind park configuration)

• Payoffs ui : A→ R (own energy production)

How do we get the windmills to play this game - giving them private
utility functions - so as to maximize total energy production?

Algorithm 1 Learning Rule
1: Initialize twice: each turbine i selects a
2: random (benchmark) orientation a0,1

i
3: resulting in power u0,1

i
4: for t > 1 do
5: if at

i 6= at−1
i or ut

i ≥ ut−1
i then

6: windmill ’content’
7: if at

i = at−1
i and ut

i < ut−1
i then

8: windmill ’discontent’
9: if ’content’ and ut

i ≥ ut−1
i then

10: keep benchmark, i.e. at
i = at

i
11: if ’content’ and ut

i < ut−1
i then

12: switch benchmark , i.e. at
i = at−1

i
13: if ’discontent’ then
14: keep old benchmark, i.e. ???
15: if ’content’ then
16: windmills play at

i with probability 1− ε
17: RAND with ε
18: else
19: windmills play RAND with probability 1

Theorem 8.1 For any desired probability p < 1, there exists ε > 0 such
that, for sufficiently large iterations, total power generated is maximal with
at least probability p.

Intuition A series of experiments leads to state with even higher
welfare until someone’s payoff goes down. That individual becomes
discontent and his searching may cause other agents to become
discontent. Eventually, the discontent agents settle into a new all-
content state, where the settling probability increases with overall
welfare of the state.

8.4 Cooperative Control
Single turbine modeled as game:

• Players i = 1, 2, . . . , n (windmills/ turbines)

• Finite strategy set Ai = {ai, bi, . . . , ki} (orientations)

• Joint strategy space A = ∏i Ai (wind park configuration)

• Payoffs ui : A→ R (total energy production)

Making windmills play this game – giving them altruistic utility
functions – will also maximize total energy production.

Transforming games by adding altruism First add constant to
make all payoffs positive. Then, for each cell, sum payoffs of both
players u′i(si) = ∑j uj(sj). For example, u1(A, A) = 3, u2(A, A) = 1,
then u′1(A, A) = 3 + 1 = 4 and u′2(A, A) = 1 + 3 = 4. This trans-
forms the prisoners dilemma into the harmony game with a unique
Nash equilibrium. However, note that this does not always work.

Difference in information

• Own energy production: ui(φs) = φs. No information nec-
essary about structure of the game, program dynamic offline,
specific dynamics will work, dynamic requires no feedback.

• Total energy: ui(φs) = φs + φ0. Need to understand structure
of the game in order to identify which specification will gener-
ate desired equilibria, more general class of dynamics will work,
program dynamics offline, dynamic requires feedback about en-
ergy total as game continues.

Which approach is better depends on the situation.

9 Experimental Game Theory
Behavioral economics Experiments by Allais/ Ellsberg/
Kahneman-Tversky challenge axioms of standard decision the-
ory and with it the notion of man as a ”perfectly rational” expected

utility maximizer. The clean ”theory of expected utility” contra-
dicted by these simple experiments lead to behavioral economics.

Experiments on animal behavior carried out by by Thorndike 1898,
Morgan 1903, Pavlov 1927, Thorpe 1956 show ”follow the path of
success/ avoid the path of failure”, later formalized as “radical be-
haviorism”/ “reinforcement learning”.

Homo economicus as the perfect rationality, pure self-interest straw
man.

• Perfect rationality: common knowledge, common beliefs, opti-
mization

• Pure self-interest: narrow self interest, no concern for others’
payoffs, no consideration of one’s actions, decisions are not sub-
ject to social influence.

More realistic environment

• Knowledge and information: unknown game structure, etc

• Behavior and motivations: behavioral heuristics

9.1 Experiments
9.1.1 Ultimatum game
Description One side proposer moves first: makes a proposal as
how to split a cake. The other side recipient responds and either
accepts the offer so that it will be realized, or destroys the cake (both
get zero).

Nash equilibria are any proposals made, where the responder ac-
cepts.

Subgame perfection Proposer takes all, accept nevertheless.

Studied with the Ultimatum game Nash equilibrium (responder
should always accept), subgame perfection (proposer gives nothing),
reputation models in case of repetition, social preferences such as
fairness, pro-sociality, spitefulness.

Information settings

• high information: players know the structure of the game, know
their own position in the game, know the payoff structure, the
game is anonymous.

• low information: players do not know the payoff structure of the
game, do not observe others’ actions, learn only about payoffs
as they realize.

Discussion The unique subgame-perfect Nash equilibrium is an
extreme allocation. Any rejection by the responder kills own and
other’s payoff, while any positive proposal, presuming (rational) ac-
ceptance, seems like a gift. However, presuming (off the equilibrium-
path) rejection of low offers, a substantial proposal may be strategi-
cally rational. Hence, it may be rational to have a rejection reputa-
tion.

Experiments Meta-analysis suggests: proposals of roughly 40 %,
high rejection rates for proposals under 20%, intermediate rejection
rates for proposals of 20%-40%, and almost zero rejection rates for
proposals > 40%. Over time, decline or no decline of proposals
depending on experimental/matching protocol.

9.1.2 Public Goods Game
Description Contributions are socially valuable (increase total pay-
offs as R > 1), but each individual has an incentive the withhold
his own contribution (free-ride as R/n < 1). The payoff functions is
given by φi(c) = (B− ci) + ∑j∈N mcpr · cj.

Nash equilibrium universal non-contribution.

Studied with the Public Goods game Nash equilibrium, social
preferences such as fairness, pro-sociality, conditional cooperation,
reciprocity, mechanisms such as punishment, rewards etc.

Information settings

• high information: players know the structure of the game, know
their own position in the game, know the payoff structure, the
game is anonymous.
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• low information: players do not know the payoff structure of the
game, do not observe others’ actions, learn only about payoffs
as they realize.

Discussion Again, the Nash equilibrium is an extreme allocation
Lowest social welfare Pareto-dominated by social optimum. Any
positive contribution decreases own payoff but increases those of
others and increases total welfare.

Experiments Meta-analysis suggests: average contributions of
roughly 40%-50% when game is played once or in the first round
when repeated; when repeated (with random re-matching without
any mechanism): over time, contributions roughly halve every 10-20
periods depending on matching protocol.

9.2 Interpretations
9.2.1 Subjective Utility Correction Project
The failure to play according to Nash equilibrium as predicted by
pure self-interest is explained using alternative payoff functions that
include social preferences and concerns for other players’ payoffs
such as

• Fairness considerations (Fehr-Schmidt)

• Inequality/inequity aversion (Bolton-Ockenfels)

• Altruism (Fehr-Gachter, Gintis-Bowles-Boyd-Fehr, Fehr-
Fischbacher)

• Reciprocity (Fischbacher-Gachter-Fehr)

Note: This approach (by the Zurich school) mirrors the various “cor-
rections” to utility functions motivated by ambiguity aversion, etc.

Social personas In the one-shot game and in the final period of
a repeated game, he would contribute zero. However, if his utility
contains a concern for the other player, and is, for example, Cobb-
Douglas of the form

ui(c) = φ1−αi
i · φαi

−i

where φα
−i is the average payoff to players j 6= i, then we have a range

of personas depending on α

• 0 rational

• (0, 0.5) moderate altruist

• 0.5 impartial altruist

• (0.5, 1) strong altruist

• 1 pure altruist

9.2.2 Mistakes equilibrium
The failure to play according to Nash equilibrium as predicted by
pure self-interest is explained by relaxing the rationality assumption.
Examples of such models include “Noise”/ QRE (Palfrey-Prisbey)
and intuitive versus contemplative players (Rubinstein).

Summary According to such a model, positive contributions are
evidence of “less” or bounded rationality.

9.2.3 Learning
The failure to play according to Nash equilibrium as predicted by
pure self-interest is explained by adaptive processes of learning to
play the game. Examples of such models include Reinforcement
learning (Roth-Erev), Directional learning (Selten), Perturbed best
reply (Young), Belief-based learning (Fudenberg-Levine), and EWA
(Camerer-Ho).

9.3 Testing Interpretations
9.3.1 Overall Analysis
Experiment setup Experiments involving 236 subjects in 16 ses-
sions. In each session, 16 players played four of our games. The
mpcr was 0.4 or 1.6 The budget was 40 coins each round. Each game
was repeated for 20 rounds. Players received instructions containing
different amounts of information about the game and sometimes
(anonymous) feedback about previous-period play. Play was incen-
tivized with real money (e.g. one coin=0.01 CHF).

By design of the experiment, games differed with respect to whether
contributing zero was a strictly dominant strategy. In half of the
games, contributing everything was a strictly dominant HOE strat-
egy (e.g. by setting the mpcr = 1.6 ¿ 1). In the other half of the games,
contributing nothing was a strictly dominant HOE strategy (e.g. by
setting the mpcr = 0.4 ¡ 1).

Summary of experimental results In total, there therefore are

• 46.7% players consistent with homo oeconomicus,

• 15.4% are consistent and anti-social,

• 21.4% are consistent and pro-social,

• 16.5% are inconsistent, meaning pro-social in one and anti-
social in the other — mistakes.

The median is neutral, the mean close to neutral. Note that inconsis-
tent players in terms of social preferences may by consistent in terms
of ‘erroneous play’

9.3.2 Analysis by Amount of Information
Types of information

• Black box: Players do not know the structure of the game, learn
nothing about other players’ actions or payoffs, and know their
own history of actions and payoffs only.

• Standard (enhanced): Players know the structure of the game,
and learn what others did in the past as the game is repeated.
(Players are explicitly told what payoffs others got).

9.3.3 Learning
A simple model of learning Suppose players initially make ran-
dom contributions. Thereafter, they follow the direction of payoff
increases and they avoid the direction of payoff decreases. Notice
such a learning rule is completely uncoupled (Foster and Young
2006) from information about others’ actions and payoffs, relying
only on own realized payoffs.

Conditional cooperation Suppose players contribute/free-ride if
others do too (Fischbacher et al, EL 2001). They increase their contri-
butions if others increase their contributions, and they decrease their
contributions if others decrease their contributions. Notice such a
learning rule is uncoupled (Hart and Mas-Colell 2003) from infor-
mation about others’ payoffs, relying only on own realized payoffs
and others’ actions.

A richer black box learning model Suppose players initially make
random contributions. Thereafter, adjustments follow four regulari-
ties:

• Asymmetric inertia: stay with your current strategy more often
after success than after failure

• Search volatility: search for new strategies more randomly after
failure than after success

• Search breadth: search for new strategies further away after fail-
ure than after success

• Directional bias: follow the direction of payoff increases, and
avoid the direction of payoff decreases

9.4 Summary
Theory vs. reality Mainstream game theory relies on rather ex-
treme assumptions such as complete information, common knowl-
edge, unbounded rationality, and optimizing behavior. In many real-
world situations, these assumptions are untenable because the game
may be too complex, behavior of others may be unobservable, play-
ers may not know others’ utility functions, and the structure of the
game may be unknown. In addition, real-world humans care about
others, and follow certain rules/norms.

Experiments Play often does not coincide with the Nash equi-
librium predictions. There are robust deviations from predictions,
and many experiments have made similar observations. To explain
these deviations, we must abandon the assumption of narrow self-
interest in favor of social preferences and/or abandon the assump-
tion of strictly optimizing behavior in favor of behavior that allows
for heuristics/learning.

7



Learning Over time, play approaches equilibrium in most settings,
including those where very limited information is available. There
is a rich theoretical literature on these convergence properties, but
relatively little of it has been tested in the laboratory. And there is
a lack of acknowledgement in experimental research of the fact that
simple heuristics may explain behavior not only in low-information
but also in richer information environments. There is plenty of room
for innovative experimental-theoretical work in this area.
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