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1 Probability theory, stochastic processes & Markov pro-
cesses

We want to model stochastic physical systems. Our main example of interest will be that
of Brownian motion, i.e. a particle in a fluid that experiences random forces from the
surrounding molecules. Since this influence is random the trajectories of the particles are
not deterministic anymore and we have to resort to a probabilistic description. For this
purpose we introduce the notion of stochastic processes.

First, let’s briefly recall some probability basics. A random variable X is a function Ω→ Rn

from the state space Ω into the reals. The state space Ω is the set of all possibilities. In
the case of the Brownian particle this would be the set of all possible trajectories x(t).
An example for a random variable is the evaluation of the trajectories at a certain time
t1. Usually we are not interested in the precise form of the state space Ω and the random
variable X. Instead we characterize the random variable X by its probability density
function (pdf) PA(x1, ..., xn). A probability density function P(x1, ..., xn) captures the
probability that the random variable has a value within the volume element dx1...dxn. This
could for example be the probability to find a Brownian particle at position (x1, x2, x3).
Of course, the probabilities need to sum to one∫

dx1...dxnP(x1, ..., xn) = 1.

The only probability distribution essential for this talk is the normal distribution with pdf

P(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
A normally distributed random variable, Z ∼ N (µ, σ2), has mean µ and variance σ2.

For a random variable X : Ω→ R, we may compute statistical moments

〈Xn〉 :=

∫
dx xnP(x).

The first moment 〈X〉 is called the mean, the second (centralized) moment 〈X2〉−〈X〉2 the
variance. For two random variables X and Y we define the probability P(x, t) of finding
X at x and Y at y. Note that P(x, y) is also the probability density of the random variable
ω ∈ Ω 7→

(
X(ω)
Y (ω)

)
. With this definition we can calculate the correlation 〈XY 〉 between to

random variables
〈XY 〉 =

∫
dxdy xy · P(x, y),

A stochastic process is a set of random variables y(t) where t denotes time. These random
variables y(t) could for example be the position or velocity of a Brownian particle. Any
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random variable is characterized by the probability density P(y1, t1) to have y(t1) = y1.
The transition probability P(y2, t2|y1, t1) describes the probability that y(t2) = y2 under the
condition that (earlier in time) y(t1) = y1. We can generalize this to transition probabilities
with several conditions P(yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1).

The molecules surrounding a Brownian particle move much faster than the particle itself.
This means that the time scale on which the molecules reach an equilibrium state after
hitting the Brownian particle is much smaller than the time scale important for the move-
ment of the Brownian. Therefore the random forces acting on the particle at a time t2
does not depend on where the particle was at t1 < t2, i.e the particle has no memory. This
property leads us to a special class of stochastic processes, the Markov process.

A Markov processes satisfies for t1 < t2 < . . . < tn

P(yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1) = P(yn, tn|yn−1, tn−1), (Markov property)

i.e. the transition probability from yn−1 at time tn−1 to the new state yn at tn depends
only the state yn−1, but not on all previous states y1, . . . , yn−2. Hence, Markov processes
are fully determined by P(y1, t1) and P(y2, t2|y1, t1). A sufficient requirement for these
probability densities to define a Markov process is the following set of equations

P(y3, t3|y1, t1) =

∫
dy2P(y3, t3|y2, t2)P(y2, t2|y1, t1), (Chapman-Kolmogorov)

P(y2, t+ ∆t) =

∫
dy1P(y2, t+ ∆t|y1, t)P(y1, t). (Evolution equation)

Roughly speaking, the Chapman-Kolmogorov equation requires that transition probabil-
ities can be arbitrarily subdivided, while the evolution equation states that a stochastic
process must have come from somewhere back in time.

An example for a Markov process is the so called Wiener process, defined by the two
probability distributions

P(y2, t2|y1, t1) =
1√

2π|t2 − t1|
exp

(
−(y2 − y1)2

2|t2 − t1|

)
,

P(y, t) =
1√
2πt

exp

(
−y

2

2t

)
.

The Wiener process describes the behavior of a particle under the influence of a random
force as we will see below.

2 Fokker-Planck equation

These few preliminaries already allow us to derive the famous Fokker-Planck equation, a
PDE that governs the time evolution of the probability density P(x, t) to find a particle
at position x at time t, following the derivations from Essler and Krüger [1, 2].
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2.1 Derivation

We are going to expand the probability density P(x, t) in the moments of the transition
probability

Mn(x, t,∆t) :=
1

n!
〈[x(t+ ∆t)− x(t)]n〉 =

1

n!

∫
dy (y − x)nP(y, t+ ∆t|x, t) (1)

by Taylor expanding in time. It is helpful to first work out the weak version of the PDE
using a test function ϕ(x) equipped with all the "nice" mathematical properties (smooth
and goes to zero sufficiently fast) we are going to need. Up to linear order, we may write∫

dy ϕ(y) · ∂P(y, t)

∂t
∆t =

∫
dy ϕ(y) [P(y, t+ ∆t)− P(y, t)] .

Using the evolution equation and by relabelling the integration variables∫
dxϕ(x) · ∂P(x, t)

∂t
∆t =

∫
dy

∫
dxϕ(y)P(y, t+ ∆t|x, t)P(x, t)−

∫
dxϕ(x)P(x, t).

From the normalization requirement 1 =
∫

dyP(y, t + ∆t|x, t), Taylor expansion, and
partial integration we find∫

dxϕ(x) · ∂P(x, t)

∂t
∆t =

∫
dxP(x, t)

∫
dy [ϕ(y)− ϕ(x)]P(y, t+ ∆t|x, t)

=

∫
dxP(x, t)

∞∑
n=1

(∂nϕ)(x)
1

n!

∫
dy (y − x)nP(y, t+ ∆t|x, t)︸ ︷︷ ︸

Mn(x,t,∆t)

=

∫
dxϕ(x)

∞∑
n=1

(−∂x)nMn(x, t,∆t)P(x, t).

Let’s abandon the test functions and resort back to the strong version of the equation by
noticing that the above equality must hold for all test functions ϕ(x),

∂P(x, t)

∂t
∆t =

∞∑
n=1

(−∂x)nMn(x, t,∆t)P(x, t).

Next, we may expand the moments Mn up to linear order Mn(x, t,∆t) = D(n)(x, t)∆t +
O(∆t2). By taking the limit ∆t→ 0 we obtain a generalized Fokker-Planck equation

∂P(x, t)

∂t
=
∞∑
n=1

(−∂x)n
[
D(n)(x, t)P(x, t)

]
.
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Usually, only the first two terms are kept (or non-zero), with which we finally arrive at the
textbook version of the Fokker-Planck equation1

∂P(x, t)

∂t
=

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
P(x, t). (2)

This equation is commonly supplemented with the initial condition P(x, t) = δ(x − x0).
Of course, one may generalize the equation to a larger state space x

∂P(x, t)

∂t
=
∑
|α|≥1

D(n)(x, t,∆t)(−∂)αP(x, t).

Note that the Fokker-Planck equation remains an approximation, after all. Still, this
approximation is useful and fulfills an important constraint: it conserves probability. We
may check this by pulling out one differentiation in (2) to obtain a continuity-like equation

∂P(x, t)

∂t
= − ∂

∂x

[
D(1)(x, t)− ∂

∂x
D(2)(x, t)

]
P(x, t) = −∂J(x, t)

∂x

with probability current

J(x, t) = D(1)(x, t)P(x, t)− ∂

∂x

[
D(2)P(x, t)

]
. (3)

If we assume this probability current to vanish on the system boundaries, the total prob-
ability is conserved.

2.2 Relation to non-equilibrium thermodynamics

We will not cover any thermodynamics in following chapters, but we will try to provide
some intuition on the relation between the Fokker-Planck equation and thermodynamics in
this section. As in statistical mechanics, the link between stochastics and thermodynamics
can be established through entropy, which is defined for a probability distribution as

S = −
∫

dxP logP .

The Fokker-Planck equation describes time derivatives of the probability density P and so
we are interested in the time derivative of entropy, the entropy rate

dS

dt
= −

∫
dx

∂

∂t
{P log P} = −

∫
dx

∂P
∂t

(1 + logP).

1Note that in this notation the derivatives act on all parts further to the right of the derivative, e.g.
the first derivative acts on ∂

∂x

[
D(1)(x, t)P(x, t)

]
.
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Here we may halt and obtain our first insight: a constant in time probability density P
implies zero entropy change, or the other way round

Time-varying total entropy =⇒ Time-varying probability density P .

The entropy rate for irreversible processes splits into two contributions: the entropy flux
across the system’s boundaries due to e.g. heat or mass flow and the internal irreversible
entropy production. Imagine for example a cell as a system that takes up sugar molecules
across its membrane, an entropy flux, and breaks down the molecules inside, an irreversible
process. How does our stochastic version of the entropy rate relate to the thermodynamics?

To gain some intuition about the connection, we first take advantage of the beauty that
the Fokker-Planck equation allows us to exchange the time derivative with a state space
derivative of the probability density P , using the probability current J

dS

dt
=

∫
dx

∂J

∂x
(1 + logP) = −

∫
dx J

∂ logP
∂x

,

where we used partial integration and the assumption that the probability current J van-
ishes on the boundary. Next, we rearrange the definition of the probability current (3) to
express ∂P

∂x
in terms of J,D(1), D(2),

∂P
∂x

=
1

D(2)

[(
D(1) − ∂D(2)

∂x

)
P − J

]
∝ FP − J,

where in the second equality we made the assumption that D(1) is proportional to a force
F and D(2) is constant. These are reasonable assumptions that hold for all examples in
this document. We find that the entropy rate splits into two terms

dS

dt
∝
∫

dx
J2

P
−
∫

dx J · F.

The first term is positive definite, while the second term has the form of a flux. Thus we
may attribute the first term to the internal entropy production due to irreversibility of
processes within the system, while the second term corresponds to an entropy flux across
the system boundaries.

3 Langevin equation

Our derivation of the Fokker-Planck equation was purely mathematical. In this section we
are going to discuss the physics behind Fokker-Planck, following Tong and Essler [3, 1]. Our
starting point will be the so called Langevin equation, which is a model for the stochastic
trajectory of a particle subject to random fluctuations. The idea of Langevin’s equation is
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to extend Newton’s equations by a random force ζ(t), which is mathematically a random
variable. This leads to the following stochastic differential equation, the general Langevin
equation

mẍ = −γẋ+ F (x) + ζ(t). (Langevin equation)

Usually, we take the random force ζ(t) to be Gaussian, justified by the central limit theorem
which roughly states that a large sum of independent random forces will be normally
distributed. Furthermore, we assume our random force at different times ζ(t′), ζ(t) to be
uncorrelated

〈ζ(t)ζ(t′)〉 = Γδ(t− t′). (4)

In the following, we are going to discuss the Langevin equation for the classical example
of Brownian particles that perform a random walk as a result of constantly bumping into
water molecules, the sum of which is what the particle feels as a random force ζ(t). This
will provide us with physical expressions for the cryptic D(n) factors in the Fokker-Planck
equation (2).

3.1 Microscopic motivation

First, we are going to provide a microscopic motivation for the Langevin equation of a
Brownian particle, as presented by de Grooth et. al. [4]. Consider the Brownian setting :
a bath containing many small balls, the solute molecules, of mass m and initial velocity v
and one large ball, the Brownian particle, of massM and initial velocity V . After an elastic
collision between the Brownian particle and one solute molecule, the Brownian particle’s
new velocity V ′ is given by

V ′ =
M −m
M +m

V +
2m

M +m
v =

(
1− 2m

M

)
V +

2m

M
v +O

(
m2

M2

)
.

Here, we have assumed the Brownian particle to be much heavier than the solute molecules,
m/M � 1. This leads to a change in momentum for the Brownian particle of ∆P =
2mv−2mV . Now consider a small timescale ∆t, during which the velocity of the Brownian
particle V (t) does not change much. Within ∆t, on average N = n∆t collisions take place.
The Brownian particle’s total change in momentum for N collisions during ∆t is then given
by

∆P = 2m
N∑
i=1

vi − 2m
N∑
i=1

Vi = 2m
n∆t∑
i=1

vi − 2mV (t)n∆t.

In the limit ∆t→ 0 we obtain the equation of motion for the Brownian particle

MV̇ = −γV + ζ, with γ = 2mn, ζ =
1

∆t

n∆t∑
i=1

2mvi.
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By comparing to the Langevin equation we postulated before, we see in this motivation
how the random force ζ emerges as the macroscopic effect of the sum of a large number of
microscopic collisions between the smaller and the Brownian particles.

3.2 Diffusion in the overdamped limit

Now consider the simplest case of a small Brownian particle in a solvent subject to random
forces ζ(t). This particle experiences a drag force −γẋ, something like a friction force. We
assume the solvent to be so viscous that γ/m � 1, which allows us to neglect the inertia
term mẍ. In this so called overdamped limit the Langevin equation reads

γẋ = ζ(t).

The integration of the above equation leads to the solution as a function of a stochastic
integral

x(t) = x(0) +
1

γ

∫ t

0

dt′ ζ(t′).

We are interested in the statistical properties of this solution instead of exact values.. For
this reason, we compute the first and second centralized moments of x(t). Recall that
averages and integrals are linear operations, so we can pull the average into the integration
and use our assumptions on the first and second moment of the random force ζ

〈x(t)− x(0)〉 =
1

γ

∫ t

0

dt′ 〈ζ(t′)〉︸ ︷︷ ︸
=0

= 0,

〈(x(t)− x(0))2〉 =
1

γ2

∫ t

0

∫ t

0

dt′dt′′ 〈ζ(t′)ζ(t′′)〉︸ ︷︷ ︸
=Γδ(t′−t′′)

=
Γ

γ2
t.

Note that we can always extract the mean of a random force into the deterministic external
force part F of the Langevin equation and by that rescale ζ to have zero mean, so that our
assumption of vanishing mean random force 〈ζ(t)〉 = 0 is not a limitation. Also note that
the
√
t dependence of the root-mean-square distance is characteristic for diffusive motion,

〈x2〉 ∼ t, in contrast to ballistic motion with x2 ∼ t2.

Using equation (1), we can now relate these moments to the the factors M1(x, t,∆t) inside
the Fokker-Planck equation (2)

M1(x, t,∆t) = 〈x(t+ ∆t)− x(t)〉 = 0

M2(x, t,∆t) = 〈[x(t+ ∆t)− x(t)]2〉 =
Γ

γ2
∆t

and hence D(1)(x, t) = 0, D(2)(x, t) = Γ
γ2 . Thus we obtain our first physically motivated

Fokker-Planck equation
∂P(x, t)

∂t
=

Γ

2γ2

∂2P(x, t)

∂x2
. (5)
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The Fokker-Planck equation for this problem simplifies to the diffusion equation, how cool
is that?

3.3 Velocity diffusion

Next, we include the inertia termmẍ and relabel ẋ→ v. The resulting Langevin’s equation
is

mv̇ + γv = ζ(t). (6)

Let’s also tackle this Langevin equation. Using d
dt

(
v(t)eγt/m

)
= (v̇+ γ

m
v)eγt/m = 1

m
ζ(t)eγt,

we obtain the integral solution

v(t) = v(0)e−γt/m +
1

m

∫ t

0

dt′ ζ(t′)e−γ(t−t′)/m.

Again, we may compute the moments

〈v(t)〉 = v(0)e−γt/m +
1

m

∫ t

0

dt′ 〈ζ(t′)〉︸ ︷︷ ︸
=0

e−γ(t−t′)/m = v(0)e−γt/m,

〈v2(t)〉 = v2(0)e−2γt/m +
Γ

2mγ
(1− e−2γt/m) = 〈v(t)〉2 + σ2(t),

with time-dependent variance σ2(t) = Γ
2mγ

(1− e−2γt/m). Similarly, if a little more cumber-
some, we obtain the Fokker-Planck equation’s moment factors Mn for this setting

M1(v, t,∆t) = 〈v(t+ ∆t)− v(t)〉 = − γ
m
v(0)e−γt/m∆t+O(∆t2),

M2(v, t,∆t) = 〈[v(t+ ∆t)− v(t)]2〉 =
Γ

m2
∆t+O(∆t2)

Mn(v, t,∆t) = 〈[v(t+ ∆t)− v(t)]n〉 = O(∆t2), for n ≥ 3,

and from this, the Fokker-Planck equation for this setting, a convection-diffusion equation

∂P(v, t)

∂t
=

1

m

[
γ
∂

∂v
v +

Γ

2m

∂2

∂v2

]
P(v, t). (7)

The above equation extends equation (5) with a convective term proportional to ∂v(vP).

3.4 Properties of Fokker-Planck solutions

Let’s briefly discuss some properties of solutions to the Fokker-Planck equation (7). Simple
solution techniques such as separation do not work for Fokker-Planck equations, see section
A.3 in the appendix for a detailed explanation. This is why Green’s functions are commonly
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used to solve the Fokker-Planck equation, but in general, Green’s functions are a useful
tools to compute solution of any partial differential equation. Green’s functions describe
the response of system to a disturbance. In this particular case of Fokker-Planck equation
we are interested how the probability distribution P(v, t) responds, if the probability that
the Brownian particle has velocity v′ at time t′ is one.

Mathematically speaking, this means that the Green’s function G(v, v′; t, t′) fulfills the
Fokker-Planck equation

∂G(v, v′; t, t′)

∂t
+

∂

∂v

[
D(1) − ∂2

∂v2
D(2)(v)

]
G(v, v′; t, t′) = δ(v − v′)δ(t− t′).

We can calculate solution for an arbitrary initial condition P(v′, t′) by convolution

P(v, t) =

∫
dv′G(v, v′; t, t′)P(v′, t′).

This is the evolution equation we have seen for Markov processes. Therefore may identify
P(v, t|v′, t′) = G(v, v′; t, t′).

The Green’s function can be found by Fourier transforming the Fokker-Planck equation
and solving the corresponding equation in momentum space. For the overdamped limit we
find the Green’s function

G(x, x′; t, t′) =
1√

2π(t− t′)Γ
exp

(
− (x− x′)2

2(t− t′)Γ

)
. (8)

By the identification of the Green’s function with the transition probability we see that
the diffusion in the overdamped limit is a Wiener process.

For the diffusion equation (7), the solution is a Gaussian function

P(v, t|v0, 0) =
1√

2πσ2(t)
exp

(
−(v − 〈v(t)〉)2

2σ2(t)

)
(9)

with time dependent mean 〈v(t)〉 = v0e
−γt/m and variance σ2(t) = Γ

2mγ
(1−e−2γt). Figure 1

shows a plot of this probability distribution as a function of time and velocity as well as 25
possible Langevin trajectories sampled from the Langevin equation (6). Here, by "possible
Langevin trajectory" we mean that these trajectories solve the Langevin equation given
some realization of the random force stochastic process ζ.

Initially at t = 0, all probability mass is concentrated around the initial value v0 = −1,
this corresponds to vanishing variance σ2(t). Soon after t > 0, the probability distribution
broadens, but probability mass and trajectories move towards 0: even though we set off
the particle with an initial velocity, it will after some time loose this drift and converge to
a vanishing velocity, on average, due to friction −γv and random forces. In the equilibrium
limit, the mean velocity vanishes 〈v(t)〉 → 0, but the fluctuations increase to a constant,
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Fokker-Planck solution
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velocity v
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Figure 1: Time evolution of Fokker-Planck and Langevin solutions for initial condition
v0 = −1. The Fokker-Planck solution is a probability distribution P(v, t) and its plot was
obtained by sampling 1000 velocity samples per timepoint from the solution (9). Darker
red corresponds to higher probability mass. Solutions to the Langevin equation (6) are
individual trajectories vζ(t) depending on the stochastic force ζ(t). The plot shows 25
Langevin solutions, the bold black dashed line is the mean of all trajectory.

〈v2(t)〉 = σ2(t) → Γ
2mγ

= 1
m
γD as t → ∞, where we have redefined the correlation

Γ = 2γ2D. In thermodynamics, we have learned about the equipartition theorem which
states that 1

2
m〈v2〉 ∼ 1

2
kBT . Taken together, this leads to the famous Einstein-Stokes

relation
D =

kBT

γ
, (10)

in which D takes the role of a diffusion constant. This is a specific occurrence of a fluc-
tuation dissipation theorem, which states that dissipation produces fluctuations and the
other way round. Here, the drag force γ feels like friction to the particles, which dissipates
kinetic energy (dissipation). However, Einstein-Stokes tells us that this dissipation leads
to diffusive motion of the particles (a fluctuation).

The Einstein-Stokes relations also allows for a consistency check of the above solution (9)
in the equilibrium limit t → ∞. In our case, the solution (9) converges to the Maxwell-
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Boltzmann distribution, as expected

P(v, t)→
√
mγ

πΓ
exp

(
−mγv

2

Γ

)
=

√
m

2πkBT
exp

(
− mv2

2kBT

)
= PBoltzmann(v), as t→∞.

4 Examples and application

Stochastic models are not limited to Brownian motion and physics. Such models are for
example used in financial mathematics, from which we present a simple stock market model.
In addition we propose a simple stochastic model of virus spreading, because of the recent
events regarding the Corona virus.

4.1 Stock market & multiplicative noise Langevin equations

The proposed model for the stock market and some of the results in this section were taken
from Asiri [5]. In the proposed model the stock price fullfills the linear differential equation

Ṡ = (µ+ ζ)S (11)

The parameter µ is called the drift and has the meaning of an average growth rate. The
variable ζ is a random Gaussian noise with the same type of correlation as the random
force in the Langevin equation

〈ζ(t)ζ(t′)〉 = σ2δ(t− t′).
with volatility σ. The volatility determines how sensitive the stock price is to the random
fluctuations.

We want to find the probability density P(S, t) of the stock price, but in contrast to our
previous Langevin equations the noise ζ is multiplied by the stock price S, which is called
multiplicative noise. In order to find a differential equation without multiplicative noise
we make a change of variables s = log(S). This change of variables is a bit problematic,
because we can not use the standard derivation rules. Due to the diffusive motion of the
random fluctuations the change in S is only σdt1/2. Together with the change originating
from the drift µ we get

dS = µS(t)dt+ σS(t)dt1/2. (12)
A more detailed explanation for why the change in S is proportional to dt1/2 can be found
in appendix A.1. The change for ds is

ds = log(S + dS)− log(S) = log(1 + µdt+ σdt1/2) (13)

=

(
µ− σ2

2

)
dt+ σdt1/2 +O(dt3/2). (14)
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Note the appearance of the additional term −σ2/2, compared with the standard derivation
rules. In the limit dt→ 0 equation (14) becomes a differential equation for s

ṡ =
∂ log(S)

∂t
= µ− σ2

2
+ ζ.

where we identified the term σdt1/2 with the random fluctuations ζ.

Now it is straightforward to find the moments for this stochastic process and thereby the
Fokker-Planck equation for the probability density of s

∂P(s, t)

∂t
= − ∂

∂s

[(
µ− σ2

2

)
P(s, t)− σ2

2

∂P(s, t)

∂s

]
.

In order to find the Green’s function we make a second change of variable u = s−
(
µ− σ2

2

)
t

∂P(u, t)

∂t
=
σ2

2

∂2P(u, t)

∂u2
.

This is the diffusion equation with the Green’s function given in equation (8). Thereby,
we can deduce the Green’s function for the Fokker-Planck equation of s

P(s, t) =
1√

2πtσ
exp

−
(
s−

(
µ− σ2

2

)
t− s0

)2

2σ2t

 ,

which means the random variable s(t) is normally distributed for any time t. Since S = es

the random variable S has to be log-normally distributed

P(S, t) =
1√

2πtσS
exp

−
(

log(S)−
(
µ− σ2

2

)
t− log(S0)

)2

2σ2t

 . (15)

The log-normal distribution is plotted in figure 2. It agrees well with the numerical solution
obtained by solving the differential equation (11). To solve this differential equation the
same numerical method as for the Langevin equation was used.

The expectation value 〈S〉 = S0e
µt grows exponentially, which is the solution of the dif-

ferential equation (11) without random fluctuations. This result is only obtained, because
of the additional term σ2/2 we got from the change of variables. With standard deriva-
tion rules the growth rate of 〈S〉 would be µ+ σ2/2, which justifies the way the Langevin
equation of s = log(S) was derived.
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Figure 2: The left picture shows the histogram for 1000 trajectories of the stock price
with initial price of 10 (black dotted line). The orange line is the expected log-normal
distribution (15) from theory. The right picture shows five instances of the stock price
evolution.

4.2 Spreading of a virus

In this subsection we propose a simple stochastic model of virus spreading. We want to
model the number of infected persons x. A first simple idea is that we have an infection
rate r with a noise r = r0 + ζ. This leads to the same model as for stock market

ẋ = (r0 + ζ)x

The limit of this model are obvious, because the mean of the probability distribution grows
exponentially as we have seen for the stock price. To get a bounded curve we multiply an
additional term (xmax − x)

ẋ = (r0 + ζ)x(xmax − x), (16)

where xmax is the limit of infected persons. Without the random fluctuations ζ this is the
logistic differential equation. The solution of the deterministic logistic differential equation
is

x(t) =
xmaxx(0)

x(0) + e−rxmaxt(xmax − x(0))
(17)

Fitting this solution to the data shown in figure 3 allows us to find estimates for r0 and
xmax shown in table 1. The standard deviation σ of the random fluctuations could not be
estimated from the single trajectory of infected persons. The value of xmax varies a lot,
because it depends on the population size. But there are also differences in the infection
rate r0, which could be due to different precautions measurements.
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country xmax r0 σ
Hubei, China 68000 3.46 · 10−6 ?
Germany 140000 1.29 · 10−6 ?
Norway 7000 21.89 · 10−6 ?

Table 1: Estimated parameters from different countries. With these numbers one can
estimated the numbers of infected persons with the solution of the logistic differential
equation (17). The solution for the model with random fluctuations is shown in 4 based
on the estimated parameters from Hubei.

Furthermore, for most of the countries the logistic curve could not be fitted well to the
data. In the right plot of figure three examples of such countries are shown. For the
Netherlands and Switzerland the curve becomes almost linear after 20 days, which can not
described well within the logistic model. One reason could be that in reality the infection
rate r0 and the limit xmax change in time, because of the precaution measurements. This
can also explain the kink in the South Korean curve. In conclusion this simple model has
its limitation, when it is applied to actual data. Nevertheless the estimated parameters
are useful to have the right scale for our model.
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Figure 3: The data of the Corona pandemic is taken from the Johns Hopkins university
[6]. On the left plot the data from three different regions is fitted by equation (17) with
floating parameter r, xmax, x(0). The right plot shows three examples where the data could
not be fitted as well by the logistic model as for the other three examples. We set day 0
to be the date, when the number of confirmed cases exceeded 100.

In a next step we want to find out how the probability distribution evolves in time for the
logistic model. The Fokker-Planck equation for this problem is 2

∂P(x, t)

∂t
= − ∂

∂x

[
r0x(xmax − x)P(x, t)− σ2x(xmax − x)

∂

∂x
[x(xmax − x)P(x, t)]

]

Since no analytical solution for this PDE could be found, a numerical approach was used.
The differential equation (16) was solved numerically for different instances of the random
fluctuations. From these solution we could estimate the probability distribution. The
results are shown in figure 4. The evolution can be divided into three phases. First,
the probability distribution is sharp, because at beginning the number of infected people
is known. Due to the random fluctuations the distribution starts broadening and in the

2Following Kamenev [7] we get for a general Langevin equation with multiplicative noise

ẋ = F (x) + b(x)ζ

the corresponding Fokker-Planck equation

∂P(x, t)

∂t
= − ∂

∂x

[
F (x)P(x, t)− b(x)

∂

∂x
[b(x)P(x, t)]

]
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Figure 4: Evolution of the probability distribution in time for different values of σ. The
probability distribution is sampled by 20000 trajectories. For r0 and xmax the estimation
from Hubei, China shown in table 1 are used.

middle phase of the spreading it gets harder to predict the exact amount of infected persons.
The maximum value of infected person is bounded at xmax, thereby all trajectories will be
close to this maximum value at some point. In this phase the probability distribution gets
sharper again. In the limit t → ∞ we get the stationary solution P(x, t) = δ(x − xmax).
There is another stationary solution P(x, t) = δ(x). But this stationary solution is only
reached in the limit t→∞ for a negative the infection rate r0. Furthermore the solutions
for the different values of σ show that the variance of the probability distribution depends
on the standard deviation σ of the random fluctuations. On the other hand the mean of
the probability distribution does not depend on σ.

5 Path integral formulation

So far, we have specified moments of the random noise ζ probability distribution. An
alternative characterization of ζ aims to directly specify the probability P [ζ(t)]. Since the
random force ζ(t) is a function of time, its corresponding probability must be a functional
of ζ and its normalization condition then reads∫

Dζ P [ζ(t)] =
∑

all trajectories ζ(t)

P [ζ(t)] = 1,

i.e. the sum over the probability P [ζ(t)] for all possible random noise functionals ζ(t) must
be unity. This naturally leads to the notion of functional integrals, the path integrals.

This section will not teach us a lot new about Fokker-Planck theory, but serves mostly
technical purposes by introducing notions like path integrals of Langevin equations or
Green’s functions in a formalism analogous to quantum mechanics that will make it easier
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for us to understand the relation of the so far discussed classical stochastic theory to non-
equilibrium quantum field theory in the Keldysh formalism. Still, we will learn about the
close relation between stochastic and quantum mechanical descriptions.

5.1 Probability distributions over Gaussian stochastic processes

First, we briefly need to discuss Gaussian processes. We would like to find the probability
P [ζ(t)] for the Gaussian random force we have so far worked with. To reproduce the two-
point correlator 〈ζ(t)ζ(t′)〉 = Γδ(t− t′) we postulated earlier, cf. equation (4), an educated
guess for the probability is

P [ζ(t)] = exp

(
−
∫ +∞

−∞
dt
ζ2(t)

2Γ

)
, (18)

normalized such that the path integral over all possible noises ζ(t) is unity,
∫
Dζ P [ζ(t)] =

1. Within this path integral formalism, correlations are defined as

〈ζ(t1)ζ(t2)...ζ(tn)〉 :=

∫
Dζ ζ(t1)ζ(t2)...ζ(tn)P [ζ].

A common tool to calculate the correlators of the noise 〈ζ(t1)ζ(t2)〉 is the so called gen-
erating function Z[J(t)]. The arguments of Z are arbitrary functions J(t). This means
Z[J(t)] defines a functional

Z[J(t)] =

∫
Dζ P [ζ(t)]e

∫
dt J(t)·ζ(t),

from which the correlators can be computed through the functional derivative 3

〈ζ(t1)〉 =
δZ

δJ(t1)

∣∣∣∣
J=0

,

〈ζ(t1)ζ(t2)〉 =
δZ

δJ(t1)δJ(t2)

∣∣∣∣
J=0

.

All we have to do now is to compute the generating function and its functional derivatives
for our probability distribution P [ζ]. By Gaussian integration we get

Z[J ] =

∫
Dζ exp

(
−
∫ ∞
−∞

dt

[
ζ(t)2

2Γ
− J(t)ζ(t)

])
= exp

(∫ ∞
−∞

Γ

2
J(t)2

)
.

3Let φ(x) be a function and F [φ] a functional. The functional derivative f(x) = δF
δφ |φ(x) is the function

f(x), which fullfills ∫
dx f(x)h(x) = lim

ε→0

1

ε
(F [φ+ εh]−F [φ])

for any function h(x). The notation δF [φ]
δφ(x1)

∣∣∣
φ(x)

means the functional derivative f(x) evaluated at x1.
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Taking the function derivative, this produces the correct correlator as expected

〈ξ(t1)〉 = [ΓJ(t1)Z[J ]]J=0 = 0,

〈ξ(t1)ξ(t2)〉 =
[
Γδ(t1 − t2) + Γ2J(t1)J(t2)Z[J ]

]
J=0

= Γδ(t1 − t2).

5.2 Martin-Siggia-Rose formalism

We are now ready to develop the path integral formulation of stochastic processes governed
by Langevin equations. This allows us to carry over the intuition we built up in the path
integral formulation of quantum mechanics and directly apply it to stochastic processes.
The similarity between stochastic processes and quantum mechanics can already be found
in our previous treatment. For example, recall the evolution equation from the first section
as well as quantum mechanics’ time evolution operator

P(y2, t+ ∆t) =

∫
dy1P(y2, t+ ∆t|y1, t)P(y1, t), (Evolution equation)

〈y2|ψ(t+ ∆t)〉 =

∫
dy1 〈y2|U(t+ ∆t, t)|y1〉 〈y1|ψ(t)〉 (QM propagator)

and note the similarity between the two equations. In this analogy the transition probabil-
ities P(y2, t+ ∆t|y1, t) take the role of the propagator U(t+ ∆t, t). In quantum mechanics,
the propagator is given through a path integral, with each path weighted exponentially by
a classical action, U(t, t0) =

∫
Dx exp

(
i
~

∫ t
t0

dt L(x, ẋ, t)
)
. We will derive in the following

a similar expression for the stochastic propagator P(y2, t + ∆t|y1, t) and obtain a the so
called Martin-Siggia-Rose action as the equivalent stochastic action.

Let’s start by transforming the Langevin equation4

ẋ = F (x) + ζ(t)

into a path integral, where for convenience we have set γ = 1. In order to find the path
integral, first define L[x, ẋ] = ẋ−F (x) and discretize the differential equation at the times
t1, ..., tn

Ln :=
xn − xn−1

∆t
− F (xn) = ζn

with xn := x(tn) and ζn := ζ(tn). The choice of letter L is on purpose as this quantity
will later turn out to take the role of a Lagrangian within the MSR formalism. We may
then transform this discretized Langevin equation into a path integral by expanding 1 with

4Note that while in principle this looks like the overdamped Langevin equation, we may transform the
general Langevin equation including an inertia term of second time derivative into a first order Langevin
stochastic differential equation.
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delta functions5

1 =

∫
Rn

dx1dx2 . . . dxn

n∏
k=1

∆tδ(Lk − ζk)→
∫
Dx δ(L[x(t), ẋ(t)]− ζ(t))

in the limit n → ∞, where we take t1, ..., tn from −∞ to ∞. We use D to abbreviate the
integration measure6 Dx =

∏N
i=1 ∆tdxi. Physically, the above path integrals sums over all

physical trajectories that satisfy the Langevin equation with given noise ζ. Because for
given noise ζ Langevin’s equation is deterministic, the path’s probability weight is a delta
function.

Next, we define a partition function Z for this setting by taking our previous path inte-
gral representations of solutions to the Langevin equation given a noise functional ζ and
averaging it over all possible noise functionals

Z :=

∫
Dζ P [ζ(t)]︸ ︷︷ ︸

all possible noises

·
∫
Dx δ(L[x, ẋ]− ζ)︸ ︷︷ ︸

Langevin trajectories for noise ζ

.

We may now plug in our expression for P [ζ(t)] from equation (18) and use the Fourier
representation of the delta function δ(x) =

∫
Dp e

∫
dt ipx

Z =

∫
DxDpDζ exp

(
−
∫
dt

1

2Γ
ζ2 + 2ip(L[x, ẋ] + ζ)

)
=

∫
DxDp exp

(
−2i

∫
dt pL[x, ẋ] + iΓp2

)
︸ ︷︷ ︸

=:−2iS[x,p]

,
(19)

where last step is a Gaussian integration7 over ζ. Physically, we extended the phase space
to (x, p) where p has no actual physical meaning besides the intended resemblance to
momentum as second classical phase variable. This reminds us of quantum mechanics:
the partition function is a path integral weighted exponentially by a time integration, and
motivates us by analogy to quantum mechanics to introduce an action for our setting, the
Martin-Siggia-Rose (MSR) action

S[x, p] =

∫
dt
[
L[x, ẋ] + iΓp2

]
=

∫
dt
[
pẋ− pF (x, t) + iΓp2

]
. (20)

5Mathematically, one has to worry about the transformation δ(xk − ζk)→ δ(L[xk]− ζk), i.e. take the
determinant of the Jacobian det( δLδx ) into account. However, by proper regularization (Ito) this determinant
becomes 1. Also note that for a general (e.g. non-linear) stochastic ODE expand L in x, i.e. Li =
Lijxj + Γijkxjxk + ... with general Jacobian Jij = Li

dxj
= Lij + 2Γijkxk + ...

6Throughout this document, we use the symbol D sloppily: different path integrals may include different
normalization constant, even though we use the same sign for them. For example, here Dx =

∏N
i=1 ∆tdxi,

but in the following path integral Dp =
∏N
i=1

dpi
π∆t

7Think about these continuous Gaussian integrations as the limit of a sum of Gaussian integrations. In
this case we have the integration measure Dζ =

∏n
i=1

dζi√
2πΓ∆t

, where ∆t is the spacing of the time steps
t1, ..., tn
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The quantity Z is similar to a partition function from classical statistical physics in that it
sums the complete state space of random noise trajectories ζ and corresponding Langevin
trajectories x. Even though it always holds Z = 1, the partition function Z is an interesting
quantity to study. For example, observables may be computed as

〈O[x(t)]〉 =

∫
DxDp O[x(t)] e−2iS[x,p].

We can integrate the auxiliary trajectory p(t) out from our last representation of the
partition function, equation (20)

Z =

∫
Dx e−

1
2Γ

∫
dt L2[x,ẋ] =

∫
Dx exp

(
− 1

2Γ

∫
dt (ẋ− F (x))2

)
.

This representation reveals that Z contains an additional stochastic interpretation similar
to the one of quantum mechanics: since Z includes all noise terms and paths and integrates
to 1, we may interpret a path integral over all paths starting at x0 and ending in x as a
transition probability

P(x, t|x0, t0) =

∫ x

x0

Dx exp

(
− 1

2Γ

∫ t

t0

dt (L[x, ẋ])2

)
, (21)

where this path integrals symbolically sums over all paths that begin in x0 at t0 and end
in x at t. Notice the similarity to the general form of a quantum mechanical propagator

〈xf , tf |x0, t0〉 =

∫ xf

x0

Dx exp

(
i

~

∫ tf

t0

dt L[x, ẋ]

)
, (22)

which apart from the imaginary unit (a Wick rotation) in the exponential is qualitatively
identical to our expression for the transition probability above.

5.3 Greens function with path integrals

Equipped with a path integral formulation of Langevin’s equation, we now want to learn
how this can be used to solve the Fokker-Planck equation. To do so, we derive Green’s
function for the diffusion in the overdamped limit (8) with the path integral formalism.
Since the Green function is equal to the propagator we get

G(x, x′; t, t′) =

∫ x

x′
Dx exp

(
− 1

2Γ

∫ t

t′
dt (ẋ− F (x))2

)
= lim

n→∞

1√
2πΓ∆t

∫ n−1∏
i=1

dxi√
2πΓ∆t

exp

(
∆t

2Γ

n∑
i=1

(
(xi − xi−1)

∆t
− F (xi)

)2
)
.
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We compute these integrals for the case F (x) = 0

G(x, x′; t, t′) = lim
n→∞

1√
2πσ

∫ n−1∏
i=1

dxi√
2πσ

exp

(
1

2σ2

n−1∑
i=2

(xi − xi−1)2 + (x1 − x′)2
+ (x− xn−1)2

)

with σ =
√

Γ∆t. In order to evaluate the integral we need that

S(xk+1, xk, x
′) := (xk+1 − xk)2 +

1

k
(xk − x′)2

= x2
k+1 − 2xk+1xk + x2

k(1 +
1

k
)− 2

k
xkx

′ +
1

k
x′2

=
k + 1

k

(
xk −

(
k

k + 1
xk+1 +

1

k + 1
x′
))2

+
1

k + 1
(xk+1 − x′)2.

The single integration over xk gives∫
dxk

1√
2πσ

exp

(
− 1

2σ2
S(xk+1, xk, x

′)

)
=

√
k√

k + 1
exp

(
− 1

2σ2

(
1

k + 1
(xk+1 − x′)2

))
.

This integration can be used inductively to evaluate the integral above

G(x, x′; t, t′) = lim
n→∞

1√
2πΓ∆tn

exp

(
−(x− x′)2

2Γn∆t

)
=

1√
2πΓ(t− t′)

exp

(
− (x− x′)2

2Γ(t− t′)

)
.

Here we see directly that the diffusion in the overdamped limit can be described by a
Wiener process. Furthermore we can verify that the Brownian particle fullfills the Markov
property, because the Wiener process is a Markov process.

5.4 Path integral derivation of the Fokker-Planck equation

The path integral representation of the Langevin equation also allows for an alternate
derivation of the Fokker-Planck equation, analogously to the derivation of the Schroedinger
equation from from quantum mechanical path integrals.

Let’s evolve our probability density function P(x, t) for a small time step ∆t

P(x, t+ ∆t) =

∫
dyP(x, t+ ∆t|y, t)P(y, t)

=

∫
d(δx)P(x, t+ ∆t|x− δx, t)P(x− δx, t).
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Notion Quantum Mechanics Stochastics (MSR)
State space location x and momentum p location x and auxiliary variable p
Central Object State Ψ(x, t) Probability P(x, t)
Propagator 〈xf , tf |x0, t0〉 P(x, t|x0, t0)
Hamiltonian H(x, p) H[x, p] = pF (x)− iΓp2

Action
∫

dt L(x, ẋ)
∫

dt L2[x, ẋ]
Time evolution Schroedinger eq Fokker-Planck eq

Table 2: Analogy between various statistical notions introduced in this document and the
corresponding quantum mechanical notions.

From equation (21) we know the propagator P(x, t+ ∆t|x− δx, t)

P(x, t+ ∆t) =

∫
d(δx)√
2π∆tΓ

exp

(
− 1

2Γ
∆t

(
δx

∆t
− F (x− δx)

)2
)
P(x− δx, t).

By expanding the square in the exponential above and further Taylor expanding the terms
as well as the probability distribution8, we obtain

P(x, t+ ∆t) =

∫
d(δx)√
2πΓ∆t

exp

(
− (δx)2

2Γ∆t

)(
1 + δx

1

Γ
F (x)− 1

Γ
(δx)2∂F (x)

∂x
+O

(
(δx)3

))
× (1 +O(∆t))

(
P(x, t)− δx∂P(x, t)

∂x
+

1

2
(δx)2∂

2P(x, t)

∂x2
+O

(
(δx)3

))
= P(x, t) +

(
Γ

2

∂2P(x, t)

∂x2
− F (x)

∂P(x, t)

∂x
+
∂F (x)

∂x
P(x, t)

)
∆t+O((∆t)2)

By taking the limit ∆t→ 0 we get the Fokker-Planck equation

∂P(x, t)

∂t
= − ∂

∂x

[
F (x)P(x, t)− Γ

2

∂P(x, t)

∂x

]
.

This derivation was analogous to the derivation of the Schroedinger equation i~∂tΨ(x, t) =
ĤΨ(x, t) and the Fokker-Planck equation might even be recasted into a similar form

i

2
∂tP(x, t) = H[x, p]P(x, t)

with Hamiltonian H(x, p) = pF (x)− iΓp2 by identifying the MSR auxiliary variable p→
− i

2
∂x using first a quantization approach from quantum mechanics.

The analogy between quantum mechanics and stochastic systems in the MSR formalism
now encompasses a state space, Hamiltonian, Lagrangian, action, and a propagator, see also

8We expan the mixed term ∝ eδxF (x−δx) and the probability function P(x− δx, t) around x as well as
the quadratic in the force term in ∆t, i.e. ∝ e∆tF 2(x−δx) ≈ 1 +O(∆t). The Gaussian integration in odd
powers of δx vanish, the Gaussian integration with δx2 already results in a quadratic term in ∆t.
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table 2. The MSR formalism works such that most tools from physics can simply be carried
over and used analogously. For example, one might try to analyze the MSR Hamiltonian
H[x, p] for minimal energy trajectories (x(t), p(t)). This completes our analogy of quantum
mechanics and stochastic processes in a path integral formulation. Besides the beauty of
this analogy, the language itself will help us to understand the field theoretic derivation of
Langevin’s equation in the chapter.

6 Keldysh formalism

This chapter aims to give a conceptual introduction to the Keldysh formalism, a non-
equilibrium quantum field theoretic framework, following the presentation from Kamenev
[7]. Using the Keldysh formalism we will be able to recover the Langevin and Fokker-Planck
equations as a classical limit from quantum field theory. Even though the Keldysh formal-
ism itself is an advanced theory, we have built up all many tools necessary to understand
the physics behind it.

6.1 Closed time contour and partition function

Before we delve into the Keldysh formalism, we need to summarize some concepts from
quantum statistical mechanics. The time evolution of a many-body mixed state ρ governed
by the time-dependent Hamiltonian H(t) is described by the von Neumann equation

∂tρ(t) = −i~ [H(t), ρ(t)] .

A solution to the von Neumann equation uses the time ordered evolution operator Ut,−∞
that shifts the initial state ρ(−∞) at time −∞ to time t

ρ(t) = Ut,−∞ρ(−∞)U−∞,t,

where we assume that at time t = −∞ the particles are non-interacting. The explicit form
of the time evolution operator Ut,t′ can be found to be

Ut,t′ = T exp

(
− i
h

∫ t

t′
dtH(t)

)
,

where T denotes the time-ordering operator. The expectation value of an observable O
can be expressed using the evolution operator

〈O〉(t) =
Tr {Oρ(t)}
Tr {ρ(t)}

=
Tr {U−∞,tOUt,−∞ρ(−∞)}

Tr {ρ(−∞)}
,

where we used the cyclic permutation property of the trace.
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Figure 5: The Keldysh contour C. The evolution operators promote a state from time −∞
(right) to +∞ and back to −∞. To derive a path integral formulation of the Keldysh
partition function, we discretize this contour.

Similarly to our discussion in the path integral chapter we can define a partition function
Z in analogy to the observable average as a sum of the entire sample space, which here is
a time shift from −∞ to ∞ and back to −∞, in equations

Z :=
Tr {U−∞,∞U∞,−∞ρ(−∞)}

Tr {ρ(−∞)}
=

Tr {U∞,−∞ρ(−∞)U−∞,∞}
Tr {ρ(−∞)}

= 1.

The second expression we can again interpret as an evolution from the system from −∞
to ∞. With this combination of time evolution operators U−∞,∞U∞,−∞ we encounter the
first central object of the Keldysh formalism, the so called closed time contour C. This
contour is visualized in figure 5.

In statistical mechanics we like partition functions, because we can express quantities of
interested as derivatives of the partition functions. Let us briefly motivate how we can
do the same for our partition function Z from above. Let O be an observable and V (t)
be an arbitrary function. Define a Hamiltonian for the forward and backward contour
HV (t)± = H0(t)±OV (t) and the generating function analogously to the partition function

Z[V ] :=
Tr
{
UV −−∞,∞UV

+

∞,−∞ρ(−∞)
}

Tr {ρ(−∞)}
.

The expectation value of the observable O can now be obtained by a functional derivative

〈O〉(t1) =
i~
2

δZ[V ]

δV (t1)

∣∣∣∣
V=0

.

6.2 Keldysh path integral formulation of an harmonic oscillator

As a next step, we are interested to derive a path integral formulation of our partition
function Z. For convenience we consider a second quantized formulation of the harmonic
oscillator with annihilation and creation operators b, b† that act on the number states |n〉.
In this formalism the Hamiltonian is given by

H = ω0b
†b.
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We are interested in the coherent states of the harmonic oscillator

|ϕ〉 =
∞∑
n=0

ϕn√
n!
|n〉,

which are eigenstates of the annihilation operator b with eigenvalue ϕ. The eigenvalue ϕ
can be an arbitrary complex number. The coherent states |ϕ〉 form an overcomplete basis
and the unity operator 9 is expressed as

1 =

∫
d[ϕ, ϕ] e−|ϕ|

2|ϕ〉〈ϕ|. (23)

To obtain the path integral formulation we discretize both, the forward and backward parts
of the Keldysh time contour, in −∞ = t1, t2, ..., tn =∞ and ∞ = tn+1, tn+2, ..., t2n = −∞,
respectively, see also figure 5, as well as the the evolution operators

U∞,−∞ =
n−1∏
k=1

Utk+1,tk and U−∞,∞ =
2n−1∏
k=n

Utk+1,tk .

By inserting the resolution of unity, equation (23), for each time step we can expand the
trace

Tr {U−∞,∞U∞,−∞ρ(−∞)} =

∫
dϕ1...dϕ2n

2n−1∏
k=1

e−|ϕk|
2〈ϕk+1|Utk+1,tk |ϕk〉〈ϕ1|ρ(−∞)|ϕ2n〉.

To derive a path integral expression we consider small time steps δt = tk+1− tk → 0. After
some further mathematical manipulations we arrive at the path integral formulation of the
partition function Z

Z =
1

Tr {ρ(−∞)}

∫
D[ϕ, ϕ] e

i
h
S[ϕ,ϕ]

with action
S[ϕ, ϕ] =

∫
C

dt ϕ(i∂t − ω0)ϕ. (24)

Note that the time integration is along the time contour C. To simplify this contour into
the real line we divide the fields ϕ into a their parts on the forward and backward branch,
ϕ±, so that we can get

S[ϕ, ϕ] =

∫ ∞
−∞

dt
[
ϕ+(i∂t − ω0)ϕ+ − ϕ−(i∂t − ω0)ϕ−

]
.

Note that the here used continuous notation is simply an abbreviation arising from the
path integral formulation.

9We use the complex integration measure d[ϕ,ϕ] = dRe(ϕ)dIm(ϕ)
π
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For the following discussion assume the initial state ρ(−∞) to be in thermal equilibrium

ρ(−∞) = e−β(H−µN),

where β is the inverse temperature and µ the chemical potential. Generally, this condition
does not restrict us from treating non-equilibrium systems, because the perturbations can
be switched on and off during the evolution on the time contour, but with the particular
Hamiltionian of the harmonic oscillator considered in this section the following results only
hold in for an initial thermal equilibrium.

The second central ingredient of the Keldysh formalism is the Keldysh rotation, defined by
the coordinate transformation

ϕcl =
1√
2

(ϕ+(t) + ϕ−(t)) and ϕq =
1√
2

(ϕ+(t)− ϕ−(t)).

The superscript cl and q stand for the classical and quantum components of the fields ϕ.
Without proof, the Keldysh rotated action for the harmonic oscillator takes the following
Gaussian form

SK [ϕ,ϕ] =

∫∫
dtdt′ϕ∗(t)G−1(t, t′)ϕ(t′),

where the classical and quantum component form the vector ϕ(t) = (ϕcl(t), ϕq(t)). The
matrix G of the quadratic form in the action is given by

G(t, t′) =

(
GK GR

GA 0

)
= −ie−iω0(t−t′)

(
2nB(ω0) + 1 θ(t− t′)
−θ(t′ − t) 0

)
,

with the bosonic occupation number nB = e−β(ω0−µ)

1−e−β(ω0−µ) , which is a consequence of the initial
thermal equilibrium of ρ(−∞). By applying a Fourier transform on G with respect to t− t′
we get the energy representation of the matrix G

GK(ε) = −2πi[2nn(ε) + 1]δ(ω0 − ε) and GR(A) = (ε− ω0 ± i0)−1.

The matrix G is called Green’s function, because up to a constant the elements of the
matrix are equal to the correlators

〈ϕ(t)α ϕβ(t′)〉 =

∫
D[ϕ,ϕ]ϕ(t)αϕβ(t′)e−

i
~SK = i~Gα,β(t, t′)

for α, β = (cl, q). These correlators are called Green’s function, because they describe the
response of the system to the creation and annihilation of a quantum.

6.3 Single particle Keldysh action

In this section we want to use the formalism of the previous section for real fields. In
analogy to the treatment of the harmonic oscillator in quantum mechanics, we split φ(t)
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into real and imaginary part

φ(t) =
1√
2ω0

(P (t)− iω0X(t))

With this expression for φ(t) we can rewrite the action from equation (24) in terms of X(t)
and P (t)

S[X,P ] =

∫
C

dt

[
PẊ − 1

2
Ẋ2 +

ω2

2
X2

]
.

This is the action of a classical harmonic oscillator with position X(t) and momentum
P (t). Integrating out momenta in the path integral formulation gives

S[X] =

∫
C

dt

[
1

2
Ẋ2 − ω2

2
X2

]
.

This can be generalised for a particle in arbitrary potential V (X) by replacing ω2

2
X2 with

V (x). As before we perform a Keldysh rotation

Xcl(t) =
1

2
[X+(t) +X−(t)] and Xq(t) =

1

2
[X+(t)−X−(t)].

Finally, we arrive at the quantum single particle Keldysh action

S[Xcl, Xq] = −
∫

dt 2Xq(Ẍcl + V ′(Xcl)), (25)

where we only consider terms up to first order in Xq. The Keldysh action of the harmonic
oscillator in thermal equilibrium can be recast into the familiar form

S[Xcl, Xq] =

∫ ∞
−∞

dtXTD−1X (26)

with Green’s function matrix D. In energy representation, the matrix D is given by

DR(A)(ε) =
1

2

1

(∂t ± i0)2 − ω2
0

,

DK(ε) = coth
( ε

2T

)
(DR(ε)−DA(ε)),

(27)

where T is the temperature of the system.

6.4 Many particle Brownian Keldysh action

Now we are prepared to derive the Langevin equation. For this, we promote our single
particle discussion of the previous sections to the Brownian setting, i.e. a large Brownian
particle in a bath of many small particles. The environment of the Brownian particle is
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modelled as a bath of harmonic oscillators in thermal equilibrium with degree of freedom
ϕs. We divide the action into three parts, the Brownian particle action S[X] from before
(25), the action of the bath of smaller particles Sbath[X,ϕs], a sum over many single particle
actions (26), and the interactions between smaller and Brownian particles Sint[X,ϕs], in
equations

S[X] = −
∫

dt 2Xq(Ẍcl + V ′(Xcl)),

Sbath[X,ϕs] =
1

2

∑
s in bath

∫ ∞
−∞

dt ϕTsD
−1
s ϕs,

Sint[X,ϕω] =
∑

s in bath

gs

∫ ∞
−∞

dtXTσ1ϕs,

where σ1 denotes the first Pauli matrix. We call the dissipative action the sum of the bath
action and interaction action. After integrating out the degrees of freedom of the bath ϕs
this dissipative action is given by

Sdisspative[X] =
1

2

∫ ∫
dtdt′XTD−1X,

D−1(t− t′) = −σ1

∑
s in bath

g2
sD
−1
s (t− t′)σ1.

(28)

From equation (27) we can determine the energy representation of D−1

[D−1
s ]R(A) = −1

2

∑
s in bath

g2
s

(ε± i0)2 − ω2
s

=

∫ ω

0

dω

2π

ωJ(ω)

ω2 − (ε± i0)2
,

where J(ω) is the spectral density defined as

J(ω) = π
∑

s in bath

g2
s

ωs
δ(ωs − ω).

The spectral density sums all frequencies ω that are present in the bath of harmonic
oscillators. In the following we will assume the simplifying ohmic bath model, in which the
spectral density is given by J(ω) = 4γω. Now we can derive an explicit expression of D

[D−1]R(A) = C ± 2iγε,

[D−1]K = 4iγε coth
( ε

2T

)
,

where C is a constant. If we transform D back into the time representation and plug into
the dissipative action (28), we find the final quantum Brownian Keldysh action

S[X] =

∫
dt
[
−2Xq(Ẍcl + γẊcl)− V (Xcl +Xq) + V (Xcl −Xq)

]
+2iγ

∫
dt

[
T (Xq)2 +

πT 2

2

∫
dt′

(Xq(t)−Xq(t′))2

sinh2[πT (t− t′)]

]
.

(29)
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6.5 Classical limit of Brownian Keldysh action and Langevin equa-
tion

By rescaling the component Xq → ~Xq, T → T/~ in the Keldysh action (29) and taking
the classical limit ~→ 0, we find the classical Brownian Keldysh action

S[X] =

∫
dt
[
−2Xq[Ẍcl + γẊcl + V ′(Xcl)] + 4iγT (Xq)2

]
. (30)

This action has partition function Z =
∫
DXqDXcl eiS[X]. In the MSR formalism, we

postulated the Langevin equation and derived from it the MSR action (20). In contrast,
the above action (30) was derived from quantum mechanical considerations, so we can now
perform the inverse steps of our MSR derivation, equation (19), to find out if our classical
Brownian Keldysh action reveals an equation in turn.

First, we use the Hubbard-Stratonovich transformation

exp
(
−(Xq)2/2a

)
=

√
1

2πa

∫
dζ exp

{
− ζ

2

2a
− iXqζ

}
,

to introduce an auxiliary field ζ

Z =

∫
DXclDXq eiS[X]

=

∫
DζDXcl e−

1
4γT

∫
dt ζ2

∫
DXq exp

{
−2i

∫
dtXq(Ẍcl + γẊcl + V ′(Xcl)− ζ)

}
.

Observe that the known probability for a ζ trajectory P [ζ(t)] = exp
(
−
∫

dt ζ
2(t)
2Γ

)
, equation

(18), already pops up here. If we reduce the right part in the above partition function to
a delta function

Z =

∫
DζDXcl e−

1
4γT

∫
dt ζ2

δ
(
Ẍcl + γẊcl + V ′(Xcl)− ζ)

)
we find that in this partition function only trajectories Xcl(t) satisfying the equation in
the delta function above

Ẍcl = −γẊcl − V ′(Xcl) + ζ(t)

enter. This is the Langevin equation we postulated in section 3, but derived here from
quantum field theoretic considerations. Here, the classical Keldysh component Xcl takes
the role of location x (hence the name classical), the function ζ the role of a random force
and the negative derivative of the potential −V ′ the role of the external forces F . The
correlator of the random force is

〈ζ(t)ζ(t′)〉 =

∫
Dζ ζ(t)ζ(t′)e−

1
4γT = 2γTδ(t− t′)

and hence reproduces the correlator (4) we postulated in section 3, including the relation
to temperature we found earlier using the Einstein stokes relation (10). This concludes our
derivation of the Langevin equation in the Keldysh formalism.
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7 Concluding remarks

Stochastic processes Physics

Fokker-Planck Langevin

Let’s take a moment and summarize the take home messages. First, we learnt about the
notion of a stochastic process and one special case of stochastic processes, the Markov
process that has no memory. Within this purely mathematical theory we derived the
Fokker-Planck equation for a Markov process. The Fokker-Planck equation describes the
time evolution of the probability density of its Markov process. To learn about the physics
of the Fokker-Planck equation, we postulated the Langevin equation as an stochastic ex-
tension of Newton’s equation. This allowed us connect the worlds of classical mechanics
and stochastic processes by computing the stochastic D(n) factors, the linearizations of
the moments of the transition probability Mn. Next, we took this connection one step
further and demonstrated how analogous the worlds of stochastic processes and quantum
mechanics can be formulated in the path integral approach of Martin, Siggia and Rose.
Finally, we were able to use the intuitions from this path integral language to derive the
Langevin equation as a classical limit from non-equilibrium quantum field theory in the
Keldysh formalism.
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A Appendix

A.1 Stochastic differential equations

The Langevin equation is an example of a stochastic differential equation. Since ζ(t) is
random, also the solutions x(t) of the Langevin equation will be random variables. Consider
a general stochastic differential equation

Ẋt = f(Xt, t) + ζt, ζt ∼ N (0, σ2).

Note that again 〈ζ(t)ζ(t′)〉 = σ2δ(t − t′). For an infinitesimal time step ∆t, the equation
reads

dXt = f(Xt, t)dt+ dWt, dWt =

∫ t+∆t

t

dt′ ζt′ .

Here, we encounter a stochastic integral for dWt. Intuitively, think of it as a sum of random
variables. A sum of Gaussian random variables is again Gaussian, dWt still has vanishing
mean, 〈dWt〉 = 0. Using 〈ζtζt′〉 = σ2δ(t− t′) we find the second moment

〈(dWt)
2〉 =

∫ t+dt

t

dt1

∫ t+dt

t

dt2 〈ζt1)ζt2〉 = σ2dt

Note that the second moment is linear in dt, i.e. dW is of order
√

dt. One thus often
writes dW = σ

√
dt. This is an interesting property of stochastic integrals.

A.2 Langevin simulation code

Langevin trajectories are easy to simulate. Here we post the Python code used to generate
the Langevin equation of section 3.3, velocity diffusion, which are plotted in figure 1. Please
note the

√
dt dependence described in the above appendix also in the code.

import numpy as np

gamma, Gamma, m = 0 .15 , 1 . 2 , 1

# time mesh to d i s c r e t i z e [ 0 , endtime ]
# with n_timesteps many s t e p s
n_timesteps = 100
endtime = 10
dt = endtime / n_timesteps

# de f i n e d i s c r e t i z e d t r a j e c t o r y i n c l u d i n g i n i t i a l cond i t i on
t r a j e c t o r y = np . z e r o s ( n_timesteps )
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t r a j e c t o r y [ 0 ] = −1

# in t e g r a t e l angev in t r a j e c t o r y
for t imestep in range (1 , n_timesteps ) :

no i s e = np . random . normal (0 , np . s q r t (Gamma) )
t r a j e c t o r y [ t imestep ] = t r a j e c t o r y [ t imestep −1]
t r a j e c t o r y [ t imestep ] −= dt ∗ gamma / m ∗ t r a j e c t o r y [ t imestep −1]
t r a j e c t o r y [ t imestep ] += np . sq r t ( dt ) ∗ no i s e

A.3 Why Fokker-Planck equations cannot be solved by separation

We make a separation ansatz P(x, t) = X(x)T (t). The diffusion equation (5) transforms
to

Ṫ

T
=

Γ

2γ2

Ẍ

X
=: ω

These differential equations have the general solutions

P(x, t) = X(x)T (t) = eωt
(
ae−kx + bekx

)
,

where k =
√

2γ2ω/Γ. For ω 6= 0 these solutions are unbounded. This means they can not
be interpreted as a probability density.

This is a general problem of the Separationsansatz. From the normalization condition
1 =

∫
dxX(x)T (t) we get that T (t) =

(∫
dxX(x)

)−1. Thereby the Separationansatz only
leads to stationary solutions. This correspond to setting ω = 0 in the example above.
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