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1 Introduction

Dynamical system is the tripel (P, E, F'), where
1. P is the phase space for the dynamic variable
x € P,
2. F is the space of the evolutionary variable t € F,
3. F: Px E — P is the evolution rule.
We call (P, E,F) a discrete dynamical system

(DDS) if F = Z, and likewise a continuous dy-
namical system (CDS) if £ = R.

Types of evolutions

1. (DDS) Iterated mappings z,+1 = F(zp,n). For
‘g—f:: = 0 it also holds that z,+1 = F"(x0).

2. (CDS) First-order (system) of ODE & = f(x,t)
with initial condition z(ty) = x¢. For au-

tonomous systems f = f(z) the solution

depends only on elapsed time and we define

x(x;to, zo) = x(s — to, 0, t0) =: x(t, xo).

Flow map for an IVP with solution ¢ — ¢(t; tg, zo)
is the map

Fj(x0) = ¢(t;t, x0).
For autonomous systems, we drop the initial time and
write F := Fé.
Flow map properties
1. (Smoothness) F} is as smooth as f(x,t).
2. (Group property) Ftt(? = Id, Fttg = Fttf o Fttol.
3. (Inverse) (F})~! = F}°

2 Fundamentals

2.1 Peano’s theorem

Peano’s theorem If f € C% near (x¢,tg), then
there exists a local solution ¢(t), i.e. ¥ = f(¢(t),1),
p(to) = xo for t € (tg — €,t0 + €).

2.2 Picard’s theorem

Picard’s theorem Assume that f € C” in ¢ near
(to,x0) and that f is locally Lipschitz in x near
(xo,t0). Then there exists a unique local solution
to the IVP.

2.3 Geometric consequences of unique-
ness

Trajectories in autonomous systems cannot in-
tersect. 'Trajectories meet, but do not intersect in

fixed points.

Trajectories in non-autonomous systems can
intersect. Extend the phase plane by ¢ = 1, then
there will be no intersection.

2.4 Local vs global uniqueness

Global existence If a local solution cannot be con-
tinued up to time 7', then we must have |z(t)| — oo
as t — T. Conversely, if a local solution is bounded,
it can be extended globally.

Global existence in linear systems For a linear
system @ = A(t)r, A€ R A€ CP. If t — A(t) is
bounded, i.e. its largest eigenvalue bounded, then a
solution z exists globally,

t

ol0) < etto) exp ([ Aas(s)ds).

to

2.5 Dependence on initial conditions

Inherited regularity for initial conditions Con-
sider the IVP & = f(x,t) with z(tg) = xo. If f € C},
for » > 1, then z(t;tp,xp) is C" in xp and the flow
map F} is a C"-diffeomorphism, i.e. (Efo)_1 is also
Cr.

Geometric meaning: images of the flow map are

smoothly deformed.

Cauchy-Green strain tensor

Gy, (z0) = (DFy, (x0))" DFy, (o)

FTLE: finite time Lyaponov exponent

1

log A (z0),

where A\, (z¢) is the largest eigenvalue of the Cauchy-
Green strain tensor. This largest eigenvalue typically
grows exponentially.

Derivation Taylor &(t) = x(t;to, x0) — x(t;to, Zo),

take squared mnorm [£(t)]? and take maximum

Y
maxXgq,&o ||€§(0 |)2‘



2.6 Dependence on parameters

Inherited regularity for parameters For an IVP
z = f(x,t,u) with x(tg) = x¢ and parameter u.
Define X = (z,u)” € R"™P, F(X) = (f,0)7, and
Xo = (xo, o). Then the previous results apply to the
system X = F(X) with X (to) = Xo, i.e. f € Cy, for
7 > 1 then X(t) is C" in Xo and z(¢; to, o, ") € C},.

Lindstedt’s approximation for periodic oscilla-
tions of nonlinear systems. Seek solutions of ansatz

ze(t) = po(ti€) + ep1(t; €) + O(€?)
pi(t) = @i(t + Tc)
Define
1. rescaled period: T, = %, w(e) = 1+ew; +O(e2),
2. rescaled time T = w(e)t, thus & = 1.4

dr w(e) dt
3. rescaled ODE % — w(e)di

T

Plug Ansatz into rescaled ODE and match equal pow-
ers of ¢, i.e. groups (1), O(e), etc terms together.
Choose period wi such that resonance cancels.

Remark on epsilon dependence Note that the
epsilon dependence in the period is essential. Solu-
tions to Ansatzes of the form x.(t) = @o(t) +e€p1(t) +
...+ O(€") might not be periodic due to resonance.

3 Stability of fixed points

3.1 Basic definitions

fla,t), z € R* f e O,
assume that z = 0 is a fixed point. Otherwise shift

0-fixed points for & =

system by fix point to make it 0.

Lyapanov stability, stable point A point x = 0
is called stable if for all ty and ¢ > 0 there exists
§ = (tp, €) > 0 such that for all g € R* with |zo| < §
we have |x(t;to, zo)| < € for all t > .

Unstable point The x = 0 fixed point is unstable
if it is not stable.

0 is called
asymptotically stable if it is stable and for all ¢y there
exists dg = do(to) such that for all z¢ with |z¢| < do

Asymptotic stability A point x =

tliglo x(t; to, xo) = 0.

Domain of attraction is the set of all points x for
which x(¢;t9,z0) — 0 as t — oo.

Attractor is a set with an open neighborhood of
points that all approach the set as t — oo.

Invariant set A set S C P is an invariant set for
the flow map F': P — P if F!(S) = S for all t € R.

3.2 Stability based on linearization

Linearization of system & = f(z) at a fixed point
p is defined as the system y = Ay withy = z—p € R",
A =Df(p) € R**™ by Taylor expanding.

3.3 Review of linear systems

3.4 Stability of fixed points in linear sys-
tems

Exponential bound by max eigenvalue For sys-
tem gy = Ay, there exists a constant C' > 0 such that

()] = le(®)yol < lle®)lllyol < Ce™[yol,

where p = v + max; Re();) with v > 0 as small as

needed and A1, Ag, ... the eigenvalues of A.

Theorem (Stability of linear systems) Consider
the linear system ¢ = Ay with y € R", A € R"*",
1. Assume that Re\; < 0 for all j. Then y = 0 is
asymptotically stable.
2. Assume that Re); < 0, or equality of geometric

and algebraic multiplicities for all eigenvalues A\g
with ReAr = 0. Then y = 0 is stable.

3. Assume that there exists ReAr > 0. Then y =0
is unstable.

3.5 Stability of fixed points in nonlinear
systems

C*-equivalence Two dynamical systems are C*-
equivalent, k£ € N, on an open set U C R" if there
exists a CF-diffeomorphism h : U — U that maps
orbits of one dynamical systems to orbits of the sec-
ond, preserving orientation, but not necessarily the
parametrization of the orbit by time, i.e. for all
z € U and t; € R there exists t € R such that

h(F" (z)) = G*(h()).
Topological equivalence is C*-equiv for k = 0.

Trick to check for topological equivalence
Check if in both systems the number of eigenvalues
of positive (negative, zero) real part matches.



Hyperbolic fixed point The fixed point z = xg of
a nonlinear system & = f(x), f(xg) = 0, is called hy-
perbolic if the eigenvalue of f’s linearization, D f(z),
satisfy Re); #£ 0 for all i.

Linear stability ~ nonlinear stability The lin-
earized stability type of a hyperbolic fixed point is
preserved under small perturbations to the nonlinear
System.

Hartman-Grobman If the fixed point x( of a non-
linear system @ = f(z), f(xo) = 0 is hyperbolic, then
this system is topologically equivalent to it lineariza-
tion in a neighborhood of xg.

Hence, for hyperbolic fixed points, linearization pre-
dicts the correct stability type and local flow geome-
try.

Stable/ unstable subspaces

(Stable)
E" = span{yo : F'yo — 0 ast — —oo} (Unstable)

E* = span{yo : F'yo — 0 as t — oo}

3.6 Determining asymptotic stability

from linearization

Hurwitz criterion For a characteristic polynomial
det(A— M) = ap A" +an 1 A" P+ ... +aiA+ag =0
with ag > 0. Then

Re)\; <0
Re); <0

<~ D;>0,

— a; >0

for all 7 and subdeterminants D;

al agp 0 e 0
a3z as ai e 0
D, =
Ap—1 0
0 0 0 ay

3.7 Lypanov’s direct (2nd) method for

stability

Problems with linear stability analysis

e Re); = 0 makes analysis inconclusive
e linearization does not address the size of the do-
main of stability.

Theorem (Lyapunov (un)stability) Consider the
system & = f(x) with f € C",z € R", f(xg) = 0.
Assume that there exists a Lyapunov function V :
U—R,VeCYU),UCR" open, 29 € U such that
V(zg) =0, V(z) >0 forallz € U\ {zo}.

1. If V(z) = (DV(z), f(x)) <0 for all x € U, then
x =0 is (Lyapunov) stable.

2. If V(z) = (DV(x), f(z)) < 0 for all z € U, then
x = 0 is asymptotically stable.

3. If V(z) = (DV(z), f(x)) < 0 for all z € U and
the set {x € U | V(x) = 0} does not contain full
trajectories, then x = 0 is asymptotically stable.

4. If V(z) = (DV(z), f(z)) > 0 for all z € U, then
x = 0 is unstable.

Theorem (Unstability by indefiniteness) Con-
sider the system & = f(z) with f € C",x €
R™, f(xo) = 0. Assume that there exists an indefinite
Lyapunov function V : U — R, V € C}(U),U c R®
open, xg € U such that there exist x1,x2 € U with
V(zy) > 0,V (z2) < 0 and V(x¢) = 0. Assume that
V is definite near zg. Then g is unstable.

Examples: pendulum, friction pendulum

4 Bifurcations & fixed points

4.1 Local nonlinear dynamics

Consider system & = f(x), f(z) € C",r > 1 with a
fixed point p,f(p) = 0. The linearized system ¢ =
D,f

Stable/ unstable subspaces are the invariant sub-
spaces

E® = span{Re(e;),Im(e;) | Re(A;) <0} (Stable)
E" = span{Re(e;),Im(e;) | Re(A;) > 0} (Unstab)
E° = span{Re(e;),Im(e;) | Re(A;) =0} (Center)

Remarks (Hyperbolic fixed points) The fixed
point p is hyperbolic iff E¢ = (.
Remark (Decay in E®, E") Solutions in E* (E")
decay toy =0as t — oo (t = —o0)
Theorem (Center manifold) There exists

1. a unique stable manifold W*#(xg) s.t

(a) W#(zp) is a C" surface, tangent to E* at x
with dim W*(z¢) = dim E*,



(b) W*(zg) is invariant; for =z € W*(xo)
|[F*(x0)| < K - exp((maxge(x,)<0 Re(Aj)t)),
t >0, |z — p| small,

2. a unique unstable manifold W*"(xy) s.t

(a) W#(xp) is a C" surface, tangent to E“ at
xo with dim W*(xp) = dim E*,

(b) W"(zg) is invariant; for = € W"(x¢)
[F!'(20)| < K - exp((minge(x;)<o Re(A))t)),
t <0, |x — p| small,

3. a center manifold W¢(z) s.t
(a) W¢(xg) is a C"! surface, tangent to E€ at

xo with dim W¢(zp) = dim E*,
(b) W#(x¢) is invariant.

4.2 The center manifold

4.3 Center manifolds depending on pa-
rameters

4.4 Bifurcations

4.5 Codimension-one bifurcations of fixed

points

5 Nonlinear dynamical systems on

the plane
5.1 One-DOF conservative mechanical
systems
Energy is conserved % = g—fldcl + g—ijzg =0.
From Newton’s law &1 = x9, @9 = —%%.

For conservative systems E(z) = ima3 + V(z1) =

Ey = const. and hence z9 = j:\/%(Eo —V(z1)).

1. Trajectories form symmetric pairs (w.r.t. the -
axis) of the same energy.

2. Clockwise orientation for trajectories: zo >
0 = x; increases (and vv) due to &1 = x3.

3. Local minima in V become center fixed points
surrounded by closed orbits.

4. Local maxima in V' become a saddle-type fixed
point.

5. Heteroclinic orbits come from a symmetric
potential with origin at a local maximum that
has an identical local maximum some distance
away.

6. Homoclinic orbits come from an asymmetric
potential with the origin at a local maximum
near a local minimum.

5.2 Global behavior in 2d autonomous DS

Consider system @ = f(z),z € R?, f € C!. Assume
that solutions exist for all times (and hence guaran-
tees uniqueness of solution).

Definition p € R? is a w-limit point of z if there
exists a monotone increasing unbounded sequence
{ti}ieN> t; > 0 such that

lim z(t;, z9) = p.

1—00
We denote by w(xg) the w-limit set of xy that con-
sists of all w-limit points of zg. A point ¢ € R? is a a-
limit point of x( if it is a w-limit point in backward
time and «a(xg) similarly denotes the set of a-limit
points of zq.

Theorem If z(t; () is bounded, then w(xg), a(zp)
are non-empty, closed, connected, and invariant, i.e.
consist of full trajectories.

Theorem (Poincare-Bendixson) If xz(t;zp) is
bounded, then w(zp), a(zp) must be one of the fol-
lowing:

1. A connected set of fixed points.
2. A limit cycle.

3. A set of fixed points and their connecting sets
homoclinic/ heteroclinic orbits

Remarks/ Consequences

1. Homoclinic/ heteroclinic orbits are generally not
robust, i.e. small perturbations make them non-
homoclinic/non-heteroclinic. However, for con-
servative system they are robust.

2. A forward-invariant, bounded open set without
fixed points must contain a limit cycle.

3. Bendixon-criterion: For & = f(x),x €
R2 f € C',U c R? simply connected and
div f(x) # 0 on U. Then there exist no limit
cycles in U.

4. Purely damped or purely forces perturbations of
a conservative system cannot have limit cycles.



6 Time dependent dynamical sys-
tems
6.1 Nonautonomous linear systems

6.2 Time-periodic homogenous linear sys-
tems

6.3 Averaging

Consider the systems, x € U C R"” with 0 < e < 1:
T =ef(x,t €) (1)
_ 1 /T
i= el =ep [ fwtoa @

Theorem (Averaging Principle) There exists a
C" change of coordinates © = z + ew(z,t,€) under
which the system (1) becomes

s =ef(2) + O(2).

Moreover, if x(t),y(t) are solutions of (1), (2) based
at xo, Yo, respectively, at t = 0, and |zg — yo| = O(e),
then |z(t) — y(y)| = O(€) on a time scale t ~ 1.



