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1 Introduction

Dynamical system is the tripel (P,E, F ), where

1. P is the phase space for the dynamic variable

x ∈ P ,

2. E is the space of the evolutionary variable t ∈ E,

3. F : P × E → P is the evolution rule.

We call (P,E, F ) a discrete dynamical system

(DDS) if E = Z, and likewise a continuous dy-

namical system (CDS) if E = R.

Types of evolutions

1. (DDS) Iterated mappings xn+1 = F (xn, n). For
∂F
∂n = 0 it also holds that xn+1 = Fn(x0).

2. (CDS) First-order (system) of ODE ẋ = f(x, t)

with initial condition x(t0) = x0. For au-

tonomous systems f = f(x) the solution

depends only on elapsed time and we define

x(x; t0, x0) = x(s− t0, 0, t0) =: x(t, x0).

Flow map for an IVP with solution t %→ ϕ(t; t0, x0)

is the map

F t
t0(x0) = ϕ(t; t, x0).

For autonomous systems, we drop the initial time and

write F t := F t
0.

Flow map properties

1. (Smoothness) F t
t0 is as smooth as f(x, t).

2. (Group property) F t0
t0

= Id, F t2
t0

= F t2
t1

◦ F t1
t0
.

3. (Inverse) (F t
t0)

−1 = F t0
t

2 Fundamentals

2.1 Peano’s theorem

Peano’s theorem If f ∈ C0 near (x0, t0), then

there exists a local solution ϕ(t), i.e. ϕ̇ = f(ϕ(t), t),

ϕ(t0) = x0 for t ∈ (t0 − ε, t0 + ε).

2.2 Picard’s theorem

Picard’s theorem Assume that f ∈ C0 in t near

(t0, x0) and that f is locally Lipschitz in x near

(x0, t0). Then there exists a unique local solution

to the IVP.

2.3 Geometric consequences of unique-

ness

Trajectories in autonomous systems cannot in-

tersect. Trajectories meet, but do not intersect in

fixed points.

Trajectories in non-autonomous systems can

intersect. Extend the phase plane by ṫ = 1, then

there will be no intersection.

2.4 Local vs global uniqueness

Global existence If a local solution cannot be con-

tinued up to time T , then we must have |x(t)| → ∞
as t → T . Conversely, if a local solution is bounded,

it can be extended globally.

Global existence in linear systems For a linear

system ẋ = A(t)x, A ∈ Rn×n, A ∈ C0
t . If t %→ A(t) is

bounded, i.e. its largest eigenvalue bounded, then a

solution x exists globally,

|x(t)| ≤ |x(t0)| exp
!" t

t0

λmax(s) ds

#
.

2.5 Dependence on initial conditions

Inherited regularity for initial conditions Con-

sider the IVP ẋ = f(x, t) with x(t0) = x0. If f ∈ Cr
x

for r ≥ 1, then x(t; t0, x0) is Cr in x0 and the flow

map F t
t0 is a Cr-diffeomorphism, i.e. (F t

t0)
−1 is also

Cr.

Geometric meaning: images of the flow map are

smoothly deformed.

Cauchy-Green strain tensor

Ct
t0(x0) = (DF t

t0(x0))
T DF t

t0(x0)

FTLE: finite time Lyaponov exponent

FTLEt
t0(x0) =

1

2(t− t0)
log λn(x0),

where λn(x0) is the largest eigenvalue of the Cauchy-

Green strain tensor. This largest eigenvalue typically

grows exponentially.

Derivation Taylor ξ(t) = x(t; t0, x0) − x(t; t0, x̃0),

take squared norm |ξ(t)|2 and take maximum

maxx0,ξ0
|ξ(t)|t
|ξ0|2
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2.6 Dependence on parameters

Inherited regularity for parameters For an IVP

ẋ = f(x, t, µ) with x(t0) = x0 and parameter µ.

Define X = (x, µ)T ∈ Rn+p, F (X) = (f, 0)T , and

X0 = (x0, µ0). Then the previous results apply to the

system Ẋ = F (X) with X(t0) = X0, i.e. f ∈ Cr
x,µ for

r ≥ 1 then X(t) is Cr in X0 and x(t; t0, x0, ·) ∈ Cr
µ.

Lindstedt’s approximation for periodic oscilla-

tions of nonlinear systems. Seek solutions of ansatz
$

xε(t) = ϕ0(t; ε) + εϕ1(t; ε) +O(ε2)

ϕi(t) = ϕi(t+ Tε)

Define

1. rescaled period : Tε =
2π
ω(ε) , ω(ε) = 1+εω1+O(ε2),

2. rescaled time τ = ω(ε)t, thus d
dτ = 1

ω(ε)
d
dt

3. rescaled ODE d
dt → ω(ε) d

dτ .

Plug Ansatz into rescaled ODE and match equal pow-

ers of ε, i.e. groups
%
1), O(ε), etc terms together.

Choose period ω1 such that resonance cancels.

Remark on epsilon dependence Note that the

epsilon dependence in the period is essential. Solu-

tions to Ansatzes of the form xε(t) = ϕ0(t)+εϕ1(t)+

. . .+O(εr) might not be periodic due to resonance.

3 Stability of fixed points

3.1 Basic definitions

0-fixed points for ẋ = f(x, t), x ∈ Rk, f ∈ Cr,

assume that x = 0 is a fixed point. Otherwise shift

system by fix point to make it 0.

Lyapanov stability, stable point A point x = 0

is called stable if for all t0 and ε > 0 there exists

δ = δ(t0, ε) > 0 such that for all x0 ∈ Rk with |x0| ≤ δ

we have |x(t; t0, x0)| ≤ ε for all t ≥ t0.

Unstable point The x = 0 fixed point is unstable

if it is not stable.

Asymptotic stability A point x = 0 is called

asymptotically stable if it is stable and for all t0 there

exists δ0 = δ0(t0) such that for all x0 with |x0| ≤ δ0

lim
t→∞

x(t; t0, x0) = 0.

Domain of attraction is the set of all points x0 for

which x(t; t0, x0) → 0 as t → ∞.

Attractor is a set with an open neighborhood of

points that all approach the set as t → ∞.

Invariant set A set S ⊂ P is an invariant set for

the flow map F t : P → P if F t(S) = S for all t ∈ R.

3.2 Stability based on linearization

Linearization of system ẋ = f(x) at a fixed point

p is defined as the system ẏ = Ay with y = x−p ∈ Rn,

A = Df(p) ∈ Rn×n by Taylor expanding.

3.3 Review of linear systems

3.4 Stability of fixed points in linear sys-

tems

Exponential bound by max eigenvalue For sys-

tem ẏ = Ay, there exists a constant C > 0 such that

|y(t)| = |ϕ(t)y0| ≤ ‖ϕ(t)‖|y0| ≤ Ceµt|y0|,

where µ = ν + maxj Re(λj) with ν ≥ 0 as small as

needed and λ1,λ2, . . . the eigenvalues of A.

Theorem (Stability of linear systems) Consider

the linear system ẏ = Ay with y ∈ Rn, A ∈ Rn×n.

1. Assume that Reλj < 0 for all j. Then y = 0 is

asymptotically stable.

2. Assume that Reλj ≤ 0, or equality of geometric

and algebraic multiplicities for all eigenvalues λk

with Reλk = 0. Then y = 0 is stable.

3. Assume that there exists Reλk > 0. Then y = 0

is unstable.

3.5 Stability of fixed points in nonlinear

systems

Ck-equivalence Two dynamical systems are Ck-

equivalent, k ∈ N, on an open set U ⊂ Rn if there

exists a Ck-diffeomorphism h : U → U that maps

orbits of one dynamical systems to orbits of the sec-

ond, preserving orientation, but not necessarily the

parametrization of the orbit by time, i.e. for all

x ∈ U and t1 ∈ R there exists t2 ∈ R such that

h(F t1(x)) = Gt2(h(x)).

Topological equivalence is Ck-equiv for k = 0.

Trick to check for topological equivalence

Check if in both systems the number of eigenvalues

of positive (negative, zero) real part matches.
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Hyperbolic fixed point The fixed point x = x0 of

a nonlinear system ẋ = f(x), f(x0) = 0, is called hy-

perbolic if the eigenvalue of f’s linearization, Df(x0),

satisfy Reλi ∕= 0 for all i.

Linear stability ∼ nonlinear stability The lin-

earized stability type of a hyperbolic fixed point is

preserved under small perturbations to the nonlinear

system.

Hartman-Grobman If the fixed point x0 of a non-

linear system ẋ = f(x), f(x0) = 0 is hyperbolic, then

this system is topologically equivalent to it lineariza-

tion in a neighborhood of x0.

Hence, for hyperbolic fixed points, linearization pre-

dicts the correct stability type and local flow geome-

try.

Stable/ unstable subspaces

Es = span{y0 : F ty0 → 0 as t → ∞} (Stable)

Eu = span{y0 : F ty0 → 0 as t → −∞} (Unstable)

3.6 Determining asymptotic stability

from linearization

Hurwitz criterion For a characteristic polynomial

det(A− λI) = anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0 = 0

with a0 > 0. Then

Reλi < 0 ⇐⇒ Di > 0,

Reλi < 0 =⇒ ai > 0

for all i and subdeterminants Di

Dn =

&

'''''''(

a1 a0 0 . . . 0

a3 a2 a1 . . . 0
...

. . .
...

... an−1 0

0 0 . . . 0 an

)

*******+

.

3.7 Lypanov’s direct (2nd) method for

stability

Problems with linear stability analysis

• Reλi = 0 makes analysis inconclusive

• linearization does not address the size of the do-

main of stability.

Theorem (Lyapunov (un)stability) Consider the

system ẋ = f(x) with f ∈ Cr, x ∈ Rn, f(x0) = 0.

Assume that there exists a Lyapunov function V :

U → R, V ∈ C1(U), U ⊂ Rn open, x0 ∈ U such that

V (x0) = 0, V (x) > 0 for all x ∈ U \ {x0}.
1. If V̇ (x) = 〈DV (x), f(x)〉 ≤ 0 for all x ∈ U , then

x = 0 is (Lyapunov) stable.

2. If V̇ (x) = 〈DV (x), f(x)〉 < 0 for all x ∈ U , then

x = 0 is asymptotically stable.

3. If V̇ (x) = 〈DV (x), f(x)〉 ≤ 0 for all x ∈ U and

the set {x ∈ U | V̇ (x) = 0} does not contain full

trajectories, then x = 0 is asymptotically stable.

4. If V̇ (x) = 〈DV (x), f(x)〉 > 0 for all x ∈ U , then

x = 0 is unstable.

Theorem (Unstability by indefiniteness) Con-

sider the system ẋ = f(x) with f ∈ Cr, x ∈
Rn, f(x0) = 0. Assume that there exists an indefinite

Lyapunov function V : U → R, V ∈ C1(U), U ⊂ Rn

open, x0 ∈ U such that there exist x1, x2 ∈ U with

V (x1) > 0, V (x2) < 0 and V (x0) = 0. Assume that

V̇ is definite near x0. Then x0 is unstable.

Examples: pendulum, friction pendulum

4 Bifurcations & fixed points

4.1 Local nonlinear dynamics

Consider system ẋ = f(x), f(x) ∈ Cr, r ≥ 1 with a

fixed point p,f(p) = 0. The linearized system ẏ =

Dpf

Stable/ unstable subspaces are the invariant sub-

spaces

Es = span{Re(ej), Im(ej) | Re(λj) < 0} (Stable)

Eu = span{Re(ej), Im(ej) | Re(λj) > 0} (Unstab)

Ec = span{Re(ej), Im(ej) | Re(λj) = 0} (Center)

Remarks (Hyperbolic fixed points) The fixed

point p is hyperbolic iff Ec = ∅.

Remark (Decay in Es, Eu) Solutions in Es (Eu)

decay to y = 0 as t → ∞ (t → −∞)

Theorem (Center manifold) There exists

1. a unique stable manifold W s(x0) s.t

(a) W s(x0) is a Cr surface, tangent to Es at x0
with dimW s(x0) = dimEs,
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(b) W s(x0) is invariant; for x ∈ W s(x0) :

|F t(x0)| ≤ K · exp((maxRe(λj)<0Re(λj)t)),

t ≥ 0, |x− p| small,

2. a unique unstable manifold W u(x0) s.t

(a) W s(x0) is a Cr surface, tangent to Eu at

x0 with dimW u(x0) = dimEu,

(b) W u(x0) is invariant; for x ∈ W u(x0) :

|F t(x0)| ≤ K · exp((minRe(λj)<0Re(λj)t)),

t ≤ 0, |x− p| small,

3. a center manifold W c(x0) s.t

(a) W c(x0) is a Cr−1 surface, tangent to Ec at

x0 with dimW c(x0) = dimEc,

(b) W s(x0) is invariant.

4.2 The center manifold

4.3 Center manifolds depending on pa-

rameters

4.4 Bifurcations

4.5 Codimension-one bifurcations of fixed

points

5 Nonlinear dynamical systems on

the plane

5.1 One-DOF conservative mechanical

systems

Energy is conserved dE(x(t))
dt = ∂E

∂x1
ẋ1 +

∂E
∂x2

ẋ2 = 0.

From Newton’s law ẋ1 = x2, ẋ2 = − 1
m

dV
dx1

.

For conservative systems E(x) = 1
2mx22 + V (x1) =

E0 = const. and hence x2 = ±
,

2
m(E0 − V (x1)).

1. Trajectories form symmetric pairs (w.r.t. the x1-

axis) of the same energy.

2. Clockwise orientation for trajectories: x2 >

0 =⇒ x1 increases (and vv) due to ẋ1 = x2.

3. Local minima in V become center fixed points

surrounded by closed orbits.

4. Local maxima in V become a saddle-type fixed

point.

5. Heteroclinic orbits come from a symmetric

potential with origin at a local maximum that

has an identical local maximum some distance

away.

6. Homoclinic orbits come from an asymmetric

potential with the origin at a local maximum

near a local minimum.

5.2 Global behavior in 2d autonomous DS

Consider system ẋ = f(x), x ∈ R2, f ∈ C1. Assume

that solutions exist for all times (and hence guaran-

tees uniqueness of solution).

Definition p ∈ R2 is a ω-limit point of x0 if there

exists a monotone increasing unbounded sequence

{ti}i∈N, ti ≥ 0 such that

lim
i→∞

x(ti, x0) = p.

We denote by ω(x0) the ω-limit set of x0 that con-

sists of all ω-limit points of x0. A point q ∈ R2 is a α-

limit point of x0 if it is a ω-limit point in backward

time and α(x0) similarly denotes the set of α-limit

points of x0.

Theorem If x(t;x0) is bounded, then ω(x0),α(x0)

are non-empty, closed, connected, and invariant, i.e.

consist of full trajectories.

Theorem (Poincare-Bendixson) If x(t;x0) is

bounded, then ω(x0),α(x0) must be one of the fol-

lowing:

1. A connected set of fixed points.

2. A limit cycle.

3. A set of fixed points and their connecting sets

homoclinic/ heteroclinic orbits

Remarks/ Consequences

1. Homoclinic/ heteroclinic orbits are generally not

robust, i.e. small perturbations make them non-

homoclinic/non-heteroclinic. However, for con-

servative system they are robust.

2. A forward-invariant, bounded open set without

fixed points must contain a limit cycle.

3. Bendixon-criterion: For ẋ = f(x), x ∈
R2, f ∈ C1, U ⊂ R2 simply connected and

div f(x) ∕= 0 on U . Then there exist no limit

cycles in U .

4. Purely damped or purely forces perturbations of

a conservative system cannot have limit cycles.
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6 Time dependent dynamical sys-

tems

6.1 Nonautonomous linear systems

6.2 Time-periodic homogenous linear sys-

tems

6.3 Averaging

Consider the systems, x ∈ U ⊆ Rn with 0 ≤ ε ≪ 1:

ẋ = εf(x, t, ε) (1)

ẏ = εf(y, ε) := ε
1

T

" T

0
f(y, t, 0) dt (2)

Theorem (Averaging Principle) There exists a

Cr change of coordinates x = z + εw(z, t, ε) under

which the system (1) becomes

ż = εf(z) +O(ε2).

Moreover, if x(t), y(t) are solutions of (1), (2) based

at x0, y0, respectively, at t = 0, and |x0 − y0| = O(ε),

then |x(t)− y(y)| = O(ε) on a time scale t ∼ 1
ε .
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