Nonlinear Dynamics and Chaos I

Janik Schüttler janiks@ethz.ch

HS19

Contents

1	Intr	roduction	2	
2	Fundamentals			
	2.1	Peano's theorem	2	
	2.2	Picard's theorem	2	
	2.3	Geometric consequences of uniqueness	2	
	2.4	Local vs global uniqueness	2	
	2.5	Dependence on initial conditions	2	
	2.6	Dependence on parameters	3	
3	Sta	Stability of fixed points		
	3.1	Basic definitions	3	
	3.2	Stability based on linearization	3	
	3.3	Review of linear systems	3	
	3.4	Stability of fixed points in linear systems	3	
	3.5	Stability of fixed points in nonlinear systems	3	
	3.6	Determining asymptotic stability from linearization	4	
	3.7	Lypanov's direct (2nd) method for stability	4	
4	Bift	Bifurcations & fixed points		
	4.1	Local nonlinear dynamics	4	
	4.2	The center manifold	5	
	4.3	Center manifolds depending on parameters	5	
	4.4	Bifurcations	5	
	4.5	Codimension-one bifurcations of fixed points	5	
5	Nonlinear dynamical systems on the plane		5	
	5.1	One-DOF conservative mechanical systems	5	
	5.2	Global behavior in 2d autonomous DS	5	
6	Time dependent dynamical systems			
	6.1	Nonautonomous linear systems	6	
	6.2	Time-periodic homogenous linear systems	6	
	6.3	Averaging	6	

1 Introduction

Dynamical system is the tripel (P, E, F), where

- 1. P is the phase space for the dynamic variable $x \in P$,
- 2. E is the space of the evolutionary variable $t \in E$,
- 3. $F: P \times E \to P$ is the evolution rule.

We call (P, E, F) a discrete dynamical system (DDS) if $E = \mathbb{Z}$, and likewise a continuous dynamical system (CDS) if $E = \mathbb{R}$.

Types of evolutions

- 1. (**DDS**) Iterated mappings $x_{n+1} = F(x_n, n)$. For $\frac{\partial F}{\partial n} = 0$ it also holds that $x_{n+1} = F^n(x_0)$.
- 2. (CDS) First-order (system) of ODE $\dot{x} = f(x, t)$ with initial condition $x(t_0) = x_0$. For **au**tonomous systems f = f(x) the solution depends only on elapsed time and we define $x(x; t_0, x_0) = x(s - t_0, 0, t_0) =: x(t, x_0)$.

Flow map for an IVP with solution $t \mapsto \varphi(t; t_0, x_0)$ is the map

$$F_{t_0}^t(x_0) = \varphi(t; t, x_0).$$

For autonomous systems, we drop the initial time and write $F^t := F_0^t$.

Flow map properties

- 1. (Smoothness) $F_{t_0}^t$ is as smooth as f(x, t).
- 2. (**Group property**) $F_{t_0}^{t_0} = Id, F_{t_0}^{t_2} = F_{t_1}^{t_2} \circ F_{t_0}^{t_1}$.
- 3. (**Inverse**) $(F_{t_0}^t)^{-1} = F_t^{t_0}$

2 Fundamentals

2.1 Peano's theorem

Peano's theorem If $f \in C^0$ near (x_0, t_0) , then there exists a local solution $\varphi(t)$, i.e. $\dot{\varphi} = f(\varphi(t), t)$, $\varphi(t_0) = x_0$ for $t \in (t_0 - \epsilon, t_0 + \epsilon)$.

2.2 Picard's theorem

Picard's theorem Assume that $f \in C^0$ in t near (t_0, x_0) and that f is locally Lipschitz in x near (x_0, t_0) . Then there exists a unique local solution to the IVP.

2.3 Geometric consequences of uniqueness

Trajectories in autonomous systems cannot intersect. Trajectories meet, but do not intersect in fixed points.

Trajectories in non-autonomous systems can intersect. Extend the phase plane by $\dot{t} = 1$, then there will be no intersection.

2.4 Local vs global uniqueness

Global existence If a local solution cannot be continued up to time T, then we must have $|x(t)| \to \infty$ as $t \to T$. Conversely, if a local solution is bounded, it can be extended globally.

Global existence in linear systems For a linear system $\dot{x} = A(t)x$, $A \in \mathbb{R}^{n \times n}$, $A \in C_t^0$. If $t \mapsto A(t)$ is bounded, i.e. its largest eigenvalue bounded, then a solution x exists globally,

$$|x(t)| \le |x(t_0)| \exp\left(\int_{t_0}^t \lambda_{max}(s) \,\mathrm{d}s\right).$$

2.5 Dependence on initial conditions

Inherited regularity for initial conditions Consider the IVP $\dot{x} = f(x,t)$ with $x(t_0) = x_0$. If $f \in C_x^r$ for $r \ge 1$, then $x(t;t_0,x_0)$ is C^r in x_0 and the flow map $F_{t_0}^t$ is a C^r -diffeomorphism, i.e. $(F_{t_0}^t)^{-1}$ is also C^r .

Geometric meaning: images of the flow map are smoothly deformed.

Cauchy-Green strain tensor

$$C_{t_0}^t(x_0) = (\mathrm{D}F_{t_0}^t(x_0))^T \mathrm{D}F_{t_0}^t(x_0)$$

FTLE: finite time Lyaponov exponent

$$FTLE_{t_0}^t(x_0) = \frac{1}{2(t - t_0)} \log \lambda_n(x_0),$$

where $\lambda_n(x_0)$ is the largest eigenvalue of the Cauchy-Green strain tensor. This largest eigenvalue typically grows exponentially.

Derivation Taylor $\xi(t) = x(t; t_0, x_0) - x(t; t_0, \tilde{x}_0)$, take squared norm $|\xi(t)|^2$ and take maximum $\max_{x_0,\xi_0} \frac{|\xi(t)|^t}{|\xi_0|^2}$

2.6 Dependence on parameters

Inherited regularity for parameters For an IVP $\dot{x} = f(x,t,\mu)$ with $x(t_0) = x_0$ and parameter μ . Define $X = (x,\mu)^T \in \mathbb{R}^{n+p}$, $F(X) = (f,0)^T$, and $X_0 = (x_0,\mu_0)$. Then the previous results apply to the system $\dot{X} = F(X)$ with $X(t_0) = X_0$, i.e. $f \in C^r_{x,\mu}$ for $r \geq 1$ then X(t) is C^r in X_0 and $x(t;t_0,x_0,\cdot) \in C^r_{\mu}$.

Lindstedt's approximation for periodic oscillations of nonlinear systems. Seek solutions of ansatz

$$\begin{cases} x_{\epsilon}(t) = \varphi_0(t;\epsilon) + \epsilon \varphi_1(t;\epsilon) + \mathcal{O}(\epsilon^2) \\ \varphi_i(t) = \varphi_i(t+T_{\epsilon}) \end{cases}$$

Define

- 1. rescaled period: $T_{\epsilon} = \frac{2\pi}{\omega(\epsilon)}, \, \omega(\epsilon) = 1 + \epsilon \omega_1 + \mathcal{O}(\epsilon^2),$
- 2. rescaled time $\tau = \omega(\epsilon)t$, thus $\frac{d}{d\tau} = \frac{1}{\omega(\epsilon)}\frac{d}{dt}$
- 3. rescaled ODE $\frac{d}{dt} \to \omega(\epsilon) \frac{d}{d\tau}$.

Plug Ansatz into rescaled ODE and match equal powers of ϵ , i.e. groups (1), $\mathcal{O}(\epsilon)$, etc terms together. Choose period ω_1 such that resonance cancels.

Remark on epsilon dependence Note that the epsilon dependence in the period is essential. Solutions to Ansatzes of the form $x_{\epsilon}(t) = \varphi_0(t) + \epsilon \varphi_1(t) + \ldots + \mathcal{O}(\epsilon^r)$ might not be periodic due to resonance.

3 Stability of fixed points

3.1 Basic definitions

0-fixed points for $\dot{x} = f(x,t), x \in \mathbb{R}^k, f \in C^r$, assume that x = 0 is a fixed point. Otherwise shift system by fix point to make it 0.

Lyapanov stability, stable point A point x = 0is called stable if for all t_0 and $\epsilon > 0$ there exists $\delta = \delta(t_0, \epsilon) > 0$ such that for all $x_0 \in \mathbb{R}^k$ with $|x_0| \leq \delta$ we have $|x(t; t_0, x_0)| \leq \epsilon$ for all $t \geq t_0$.

Unstable point The x = 0 fixed point is unstable if it is not stable.

Asymptotic stability A point x = 0 is called asymptotically stable if it is stable and for all t_0 there exists $\delta_0 = \delta_0(t_0)$ such that for all x_0 with $|x_0| \le \delta_0$

$$\lim_{t \to \infty} x(t; t_0, x_0) = 0$$

Domain of attraction is the set of all points x_0 for which $x(t; t_0, x_0) \to 0$ as $t \to \infty$.

Attractor is a set with an open neighborhood of points that all approach the set as $t \to \infty$.

Invariant set A set $S \subset P$ is an invariant set for the flow map $F^t : P \to P$ if $F^t(S) = S$ for all $t \in \mathbb{R}$.

3.2 Stability based on linearization

Linearization of system $\dot{x} = f(x)$ at a fixed point p is defined as the system $\dot{y} = Ay$ with $y = x - p \in \mathbb{R}^n$, $A = Df(p) \in \mathbb{R}^{n \times n}$ by Taylor expanding.

3.3 Review of linear systems

3.4 Stability of fixed points in linear systems

Exponential bound by max eigenvalue For system $\dot{y} = Ay$, there exists a constant C > 0 such that

$$|y(t)| = |\varphi(t)y_0| \le \|\varphi(t)\| |y_0| \le C e^{\mu t} |y_0|,$$

where $\mu = \nu + \max_j \operatorname{Re}(\lambda_j)$ with $\nu \ge 0$ as small as needed and $\lambda_1, \lambda_2, \ldots$ the eigenvalues of A.

Theorem (Stability of linear systems) Consider the linear system $\dot{y} = Ay$ with $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$.

- 1. Assume that $\operatorname{Re}\lambda_j < 0$ for all j. Then y = 0 is asymptotically stable.
- 2. Assume that $\operatorname{Re}\lambda_j \leq 0$, or equality of geometric and algebraic multiplicities for all eigenvalues λ_k with $\operatorname{Re}\lambda_k = 0$. Then y = 0 is stable.
- 3. Assume that there exists $\operatorname{Re}\lambda_k > 0$. Then y = 0 is unstable.

3.5 Stability of fixed points in nonlinear systems

 C^k -equivalence Two dynamical systems are C^k equivalent, $k \in \mathbb{N}$, on an open set $U \subset \mathbb{R}^n$ if there exists a C^k -diffeomorphism $h : U \to U$ that maps orbits of one dynamical systems to orbits of the second, preserving orientation, but not necessarily the parametrization of the orbit by time, i.e. for all $x \in U$ and $t_1 \in \mathbb{R}$ there exists $t_2 \in \mathbb{R}$ such that $h(F^{t_1}(x)) = G^{t_2}(h(x)).$

Topological equivalence is C^k -equiv for k = 0.

Trick to check for topological equivalence Check if in both systems the number of eigenvalues of positive (negative, zero) real part matches. **Hyperbolic fixed point** The fixed point $x = x_0$ of a nonlinear system $\dot{x} = f(x)$, $f(x_0) = 0$, is called hyperbolic if the eigenvalue of f's linearization, $Df(x_0)$, satisfy $\text{Re}\lambda_i \neq 0$ for all *i*.

Linear stability \sim nonlinear stability The linearized stability type of a hyperbolic fixed point is preserved under small perturbations to the nonlinear system.

Hartman-Grobman If the fixed point x_0 of a nonlinear system $\dot{x} = f(x)$, $f(x_0) = 0$ is hyperbolic, then this system is topologically equivalent to it linearization in a neighborhood of x_0 .

Hence, for hyperbolic fixed points, linearization predicts the correct stability type and local flow geometry.

Stable/ unstable subspaces

$$E^{s} = \operatorname{span}\{y_{0} : F^{t}y_{0} \to 0 \text{ as } t \to \infty\}$$
(Stable)
$$E^{u} = \operatorname{span}\{y_{0} : F^{t}y_{0} \to 0 \text{ as } t \to -\infty\}$$
(Unstable)

3.6 Determining asymptotic stability from linearization

Hurwitz criterion For a characteristic polynomial $det(A - \lambda I) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0$ with $a_0 > 0$. Then

$$\operatorname{Re}\lambda_i < 0 \quad \Longleftrightarrow \quad D_i > 0,$$
$$\operatorname{Re}\lambda_i < 0 \quad \Longrightarrow \quad a_i > 0$$

for all i and subdeterminants D_i

$$D_n = \begin{pmatrix} a_1 & a_0 & 0 & \dots & 0 \\ a_3 & a_2 & a_1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & a_{n-1} & 0 \\ 0 & 0 & \dots & 0 & a_n \end{pmatrix}.$$

3.7 Lypanov's direct (2nd) method for stability

Problems with linear stability analysis

- $\operatorname{Re}\lambda_i = 0$ makes analysis inconclusive
- linearization does not address the size of the domain of stability.

Theorem (Lyapunov (un)stability) Consider the system $\dot{x} = f(x)$ with $f \in C^r, x \in \mathbb{R}^n, f(x_0) = 0$. Assume that there exists a Lyapunov function $V : U \to \mathbb{R}, V \in C^1(U), U \subset \mathbb{R}^n$ open, $x_0 \in U$ such that $V(x_0) = 0, V(x) > 0$ for all $x \in U \setminus \{x_0\}$.

- 1. If $\dot{V}(x) = \langle DV(x), f(x) \rangle \le 0$ for all $x \in U$, then x = 0 is (Lyapunov) stable.
- 2. If $\dot{V}(x) = \langle DV(x), f(x) \rangle < 0$ for all $x \in U$, then x = 0 is asymptotically stable.
- 3. If $\dot{V}(x) = \langle DV(x), f(x) \rangle \leq 0$ for all $x \in U$ and the set $\{x \in U \mid \dot{V}(x) = 0\}$ does not contain full trajectories, then x = 0 is asymptotically stable.
- 4. If $\dot{V}(x) = \langle DV(x), f(x) \rangle > 0$ for all $x \in U$, then x = 0 is unstable.

Theorem (Unstability by indefiniteness) Consider the system $\dot{x} = f(x)$ with $f \in C^r, x \in \mathbb{R}^n, f(x_0) = 0$. Assume that there exists an indefinite Lyapunov function $V : U \to \mathbb{R}, V \in C^1(U), U \subset \mathbb{R}^n$ open, $x_0 \in U$ such that there exist $x_1, x_2 \in U$ with $V(x_1) > 0, V(x_2) < 0$ and $V(x_0) = 0$. Assume that \dot{V} is definite near x_0 . Then x_0 is unstable.

Examples: pendulum, friction pendulum

4 Bifurcations & fixed points

4.1 Local nonlinear dynamics

Consider system $\dot{x} = f(x), f(x) \in C^r, r \ge 1$ with a fixed point p, f(p) = 0. The linearized system $\dot{y} = D_p f$

Stable/ unstable subspaces are the invariant subspaces

$$E^s = \operatorname{span}\{\operatorname{Re}(e_j), \operatorname{Im}(e_j) \mid \operatorname{Re}(\lambda_j) < 0\}$$
 (Stable)

$$E^{u} = \operatorname{span}\{\operatorname{Re}(e_{j}), \operatorname{Im}(e_{j}) \mid \operatorname{Re}(\lambda_{j}) > 0\}$$
 (Unstab)

$$E^{c} = \operatorname{span}\{\operatorname{Re}(e_{j}), \operatorname{Im}(e_{j}) \mid \operatorname{Re}(\lambda_{j}) = 0\}$$
 (Center)

Remarks (Hyperbolic fixed points) The fixed point p is hyperbolic iff $E^c = \emptyset$.

Remark (Decay in E^s , E^u) Solutions in E^s (E^u) decay to y = 0 as $t \to \infty$ ($t \to -\infty$)

Theorem (Center manifold) There exists

- 1. a unique stable manifold $W^s(x_0)$ s.t
 - (a) $W^s(x_0)$ is a C^r surface, tangent to E^s at x_0 with dim $W^s(x_0) = \dim E^s$,

- (b) $W^{s}(x_{0})$ is invariant; for $x \in W^{s}(x_{0})$: $|F^{t}(x_{0})| \leq K \cdot \exp((\max_{\operatorname{Re}(\lambda_{j}) < 0} \operatorname{Re}(\lambda_{j})t)),$ $t \geq 0, |x - p| \text{ small},$
- 2. a unique unstable manifold $W^u(x_0)$ s.t
 - (a) $W^s(x_0)$ is a C^r surface, tangent to E^u at x_0 with dim $W^u(x_0) = \dim E^u$,
 - (b) $W^u(x_0)$ is invariant; for $x \in W^u(x_0)$: $|F^t(x_0)| \leq K \cdot \exp((\min_{\operatorname{Re}(\lambda_j) < 0} \operatorname{Re}(\lambda_j)t)),$ $t \leq 0, |x - p|$ small,
- 3. a center manifold $W^c(x_0)$ s.t
 - (a) $W^c(x_0)$ is a C^{r-1} surface, tangent to E^c at x_0 with dim $W^c(x_0) = \dim E^c$,
 - (b) $W^s(x_0)$ is invariant.

4.2 The center manifold

- 4.3 Center manifolds depending on parameters
- 4.4 Bifurcations
- 4.5 Codimension-one bifurcations of fixed points

5 Nonlinear dynamical systems on the plane

5.1 One-DOF conservative mechanical systems

Energy is conserved $\frac{dE(x(t))}{dt} = \frac{\partial E}{\partial x_1}\dot{x}_1 + \frac{\partial E}{\partial x_2}\dot{x}_2 = 0.$ From Newton's law $\dot{x}_1 = x_2, \dot{x}_2 = -\frac{1}{m}\frac{dV}{dx_1}.$ For conservative systems $E(x) = \frac{1}{2}mx_2^2 + V(x_1) = E_0 = const.$ and hence $x_2 = \pm \sqrt{\frac{2}{m}(E_0 - V(x_1))}.$

- 1. Trajectories form symmetric pairs (w.r.t. the x_1 -axis) of the same energy.
- 2. Clockwise orientation for trajectories: $x_2 > 0 \implies x_1$ increases (and vv) due to $\dot{x}_1 = x_2$.
- 3. Local minima in V become center fixed points surrounded by closed orbits.
- 4. Local maxima in V become a saddle-type fixed point.
- 5. Heteroclinic orbits come from a symmetric potential with origin at a local maximum that has an identical local maximum some distance away.

6. **Homoclinic orbits** come from an asymmetric potential with the origin at a local maximum near a local minimum.

5.2 Global behavior in 2d autonomous DS

Consider system $\dot{x} = f(x), x \in \mathbb{R}^2, f \in C^1$. Assume that solutions exist for all times (and hence guarantees uniqueness of solution).

Definition $p \in \mathbb{R}^2$ is a ω -limit point of x_0 if there exists a monotone increasing unbounded sequence $\{t_i\}_{i\in\mathbb{N}}, t_i \geq 0$ such that

$$\lim_{i \to \infty} x(t_i, x_0) = p.$$

We denote by $\omega(x_0)$ the ω -limit set of x_0 that consists of all ω -limit points of x_0 . A point $q \in \mathbb{R}^2$ is a α -limit point of x_0 if it is a ω -limit point in backward time and $\alpha(x_0)$ similarly denotes the set of α -limit points of x_0 .

Theorem If $x(t; x_0)$ is bounded, then $\omega(x_0), \alpha(x_0)$ are non-empty, closed, connected, and invariant, i.e. consist of full trajectories.

Theorem (Poincare-Bendixson) If $x(t; x_0)$ is bounded, then $\omega(x_0), \alpha(x_0)$ must be one of the following:

- 1. A connected set of fixed points.
- 2. A limit cycle.
- 3. A set of fixed points and their connecting sets homoclinic/ heteroclinic orbits

Remarks/ Consequences

- 1. Homoclinic/ heteroclinic orbits are generally not robust, i.e. small perturbations make them nonhomoclinic/non-heteroclinic. However, for conservative system they are robust.
- 2. A forward-invariant, bounded open set without fixed points must contain a limit cycle.
- 3. Bendixon-criterion: For $\dot{x} = f(x), x \in \mathbb{R}^2, f \in C^1, U \subset \mathbb{R}^2$ simply connected and div $f(x) \neq 0$ on U. Then there exist no limit cycles in U.
- 4. Purely damped or purely forces perturbations of a conservative system cannot have limit cycles.

6 Time dependent dynamical systems

- 6.1 Nonautonomous linear systems
- 6.2 Time-periodic homogenous linear systems

6.3 Averaging

Consider the systems, $x \in U \subseteq \mathbb{R}^n$ with $0 \le \epsilon \ll 1$:

$$\dot{x} = \epsilon f(x, t, \epsilon) \tag{1}$$

$$\dot{y} = \epsilon \overline{f}(y,\epsilon) := \epsilon \frac{1}{T} \int_0^T f(y,t,0) \,\mathrm{d}t$$
 (2)

Theorem (Averaging Principle) There exists a C^r change of coordinates $x = z + \epsilon w(z, t, \epsilon)$ under which the system (1) becomes

$$\dot{z} = \epsilon \overline{f}(z) + \mathcal{O}(\epsilon^2).$$

Moreover, if x(t), y(t) are solutions of (1), (2) based at x_0, y_0 , respectively, at t = 0, and $|x_0 - y_0| = \mathcal{O}(\epsilon)$, then $|x(t) - y(y)| = \mathcal{O}(\epsilon)$ on a time scale $t \sim \frac{1}{\epsilon}$.